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INTRODUCTION 

Active development of the automatic control theory has begun with 
electromachine systems and radio automatics systems. Later it has appeared 
that methods of the automatic control theory allow to explain work of the 
various physical nature objects: in the mechanic, power, radio and the electri-
cal engineer, that is everywhere where is feedback. 

In the book the sections of the the automatic control theory, necessary 
for term paper performance are considered. Questions of the mathematical 
description of linear, nonlinear and pulse systems; algebraic and frequency 
criteria for an estimation of stability of systems of automatic control; indica-
tors of quality of their process of regulation are considered. The concrete 
numerical examples facilitating development of a material are resulted. 

The primary goals of a term paper are:  
- Drawing up on a function chart circuit diagram. 
- Drawing up of mathematical model in the form of the block diagram. 
- System research on stability. 
- Construction of system transient process for regulation quality estimation. 
- An estimation of regulation process accuracy. 

For term paper performance it is necessary to choose a circuit diagram 
of system and numerical values of parameters of its elements (the Appendix 
1). Also it is possible to use additional information from books [1-10] in or-
der to carry out task.  
Linear continuous ACS. 

- To give the short description of automatic control system (ACS). 
- To describe a principle of ACS regulation.  
- Using linear models of ACS elements (the Appendix 1) to make 

on the base of system circuit diagram functional and structural 
schemes.  

- To get openloop transfer function of system. 
- To find transfer functions of the closed-loop system on setting 

influence and to the desturbance factor. 
- To write down differential equation of ACS. 
- To check upACS on stability on the of roots of the characteristic 

equation of system.To check up ACS on stability, using criterion  
- of Mikhailov stability.To check up ACS on stability, using crite-

rion of Nyquist stability. 
- To define margins of system stability on amplitude and a phase. 
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- To define by Gurvits stability criterion critical gain of open-loop 
system. 

- Under zero conditions, to construct the transitive characteristic of 
system and to define its quality indicators. 

- To define the full established error of system. 
Nonlinear ACS. 

- To accept that the amplyfing unit in system is a nonlinear element 
and to make the unit diagram of nonlinear ACS. 

- To reduse the block diagram of nonlinear ACS to typical and to 
get transfer function of a linear part of system. 

- To receive the differential equation of harmoniously linearized 
nonlinear system. 

- To estimate stability of harmoniously linearized nonlinear system 
by Goldfarb method. 

- Using Popova V. M. absolute stability criterion to investigate sta-
bility of system balance position in general. 
Linear pulse ACS. 

- To generate the scheme of pulse system. 
- To get transfer function of a continuous part of pulse system  
- To define, using the Kotelnikov theorem, the period of quantiza-

tion. 
- To find open-loop and closed-loop transfer functions of system. 
- To define stability of system on the base of roots of the character-

istic equation. 
- To define stability of system, using Mikhailov stability criterion 

analog. 
- Under conditions zero, to construct the discrete transitive charac-

teristic of system and to define its quality indicators. 
- To define a regulation error on setting influence. 
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1 LINEAR AUTOMATIC CONTROL SYSTEM 

1.1 Automatic Control System Functional Diagram Design According 
to its Circuit Schematic 

 
Any automatic control system (ACS) functional diagram includes plant 

with controllable output value x(t) and disturbance f, control unit (CU), that 
provides output value stabilization with prescribed accuracy x that 
is 0( )x t x const  ; setting device (SD), which provides required x0 value; 
feedback; comparing summarizing unit (CSU) (fig. 1.1). 

CU consists of amplifying element, execution unit and subsequent or 
parallel correction. 

 
Fig. 1.1. ACS functional diagram 

 
Besides, the control system could be realized additional disturbance f 

control or reference signal g control, or simultaneously disturbance and refer-
ence signal control (combined control). 

CSU could be implemented on operational, magnetic or rotating ampli-
fier, or on measurement device. 

Various sensors which transform output controlled value 0x  of the plant 
into electrical signal present primary feedback. 

Initial ACS circuit schematic divided into separate devices and nodes 
with taking into account the functions performed. Also SD and plant are 
identified in circuit. In the following systems plant is a DC motor with the 
reduction gear, and controlled value is rotation angle. It is necessary to re-
member that in the control system functional diagram, in the forward path of 
reference signal g passing the first place takes SD, and plant takes the last. 
(Fig. 1.1). 
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Example 1.1. Make the functional diagram according to the circuit 
schematic of DC motor rotating frequency   control system, represented in 
fig. 1.2. 

 
Fig. 1.2. Circuit schematic of DC motor rotating frequency control system 

 
Setting device for this system is potentiometer R. It is placed on the first 

place in the functional scheme. (fig. 1.2). According to the ACS tittle the 
plant is a Direct Current Motor (DCM), and its controlled value is a rotating 
frequency  . Therefore DC motor Uin is placed on the last place in the for-
ward path. Uin voltage is compared with UFB voltage and forwards the signal 
by turns goes through electronic amplifier EA, servomotor SM, reducer RD, 
direct current generator DCG and comes on DCM. Tacho-generator TG is a 
sensor, which transforms frequency   into voltage UFB, measured on poten-
tiometer RFB. Disturbance f in the given system is resistance (load) moment 
ML (fig. 1.3). 

 
Fig. 1.3. System 

 
Automated control or stabilization system task provides the required 

signal x0  in the plant output. Deviation system control principle is in refer-
ence signal changing which acts on plant depending on difference between 
the set value and real output value. 

Let’s consider deviation control principle on the DCM rotation frequen-
cy system functional scheme as the following (example 1.1). 
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If the load on the DCM shaft increases, the disturbance ML increases 
consequently too. This leads to 0  and the decreased UFB. Therefore, positive 
difference in FBU U U    appears at the EA input that in its turn leads to 
the signal value magnitude, fed on servomotor, increasing, that means current 
in the DC motor circuit coil also increases. Rotating frequency will increase 
proportionally from U  to 0 . 

Thus, any deviation of the output controlled value ( )x t  from the re-
quired value 0x  leads to the error: 0( )x t x x   . 

This error x  is reduced to zero with the given accuracy by the system during 
control process. 

1.2 Automated Control System Unit Diagram Design 

For the block diagram construction one should make the transfer func-
tions of the control system devices (appendix 1) and equipment on the base 
of their differential equations. Herewith, differential equation disturbance f 
component (Mc, I etc.) needs to be taken into account only for the plant. 
That’s why the plant will have two transfer functions: reference signal 

( )Plant
gW s  and disturbance ( )Plant

fW s . CSU also have some kinds of transfer 
functions and their quantity determined by the quantity of inputs. 

For the definition of transfer function expression according to the spe-
cific influence superposition principle is used. 

Transfer function – relation between output and input signal in the La-
place transform, with zero initial conditions. 

Example 1.2. Obtain transfer function for the direct current generator 
( )DCGW s . 
Solution: 
Direct current generator differential equation (look appendix 1) has a 

view: 
 1( 1) ( ) ( ).G G G FCT p U t K U t       (1.1) 

Applying Laplace transform to the equation (2.1) get 

1( 1) ( ) ( )G G G FCT s U s K U s       

Then, according to the transfer function definition write 

1( )
( ) .

( ) 1
G G

DCG
FC G

U s K
W s

U s T s


 
  

 

Example 1.3. Obtain plant transfer functions of automated control system repre-
sented in fig. 1.3. 

Solution 
Lets write direct current generator differential equation: 

2
1 2( 1) ( ) ( ) ( 1) .E EM EM M AV M E LT T p T p t K U t K T p M              (1.2) 
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Using superposition principle obtain direct currenct generator voltage anchor chain 

transfer function – ( )AVU
DCGW s . For this, let’s equate 0LM  . Then equation (1.2) takes the 

view: 
2

1( 1) ( ) ( )E EM EM M AVT T p T p t K U t       

Let’s get direct current generator anchor chain transfer function: 

1
2

( )
( ) .

( ) ( 1)
AVU M

DCG
AV E EM EM

s K
W s

U s T T s T s


 
   

 

Similarly get direct current generator resisting moment transfer function LM
DCGW (s), 

for this reason let’s equate ( ) 0AVU t  . 

2
2

( ) ( 1)
( )

( ) ( 1)
LM M E

DCG
L E M M

s K T s
W s

M s T T s T s

    
 
     

. 

Let’s define the concept of the unit diagram. 
Unit diagram – a graphical representation of the device differential equation, 

when the transfer function expression is written inside the rectangle, input signal and out-
put signal are represented by arrows. 

ACS unit diagram composed according to it’s functional diagram taking into ac-
count obtained transfer functions of devices and equipment included in this diagram. Unit 
diagram represented on fig. 1.4 corresponds to the functional diagram represented on fig. 
1.1. 

Example 1.4. Make unit diagram according to the functional scheme of DCG rota-
tion frequency ADS, depicted on fig. 1.3.  

Solution. 
Let’s get ADS devices and equipment transfer functions: 

 Tachogenerator TG
( )

( )
( )TG TG

TG

s
W s K

U s


 


; 

 Resistence RFB – 
( )

( )
( )

FB
TG

TG

U s
W s K

U s


 


; 

 Electronic amplifier EA –
( )

( ) EA
EA EA

U s
W s K

U


 


; 

 Servomotor SM – 
( )

( )
( ) ( 1)

SM SM
SM

EA SM

U s K
W s

U s T s
 


; 

 Reducer RD – ( )RD RDW s K . 

 
Unit diagram for this scheme is represented on fig. 1.4. 
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Fig. 1.4. Rotation frequency ADS unit diagram 

 

1.3 ACS Transfer Functions 

Using structural transformation rules, bring obtained ADS unit diagram to the form 
(fig. 1.5). 

 
Fig. 1.5. ADS Unit diagram 

 
Let’s consider some ACS transfer functions formation: 

 open-loop system transfer function ( )OLSW s ; 

 reference signal closed-loop system transfer function ( )g
CLSW s ; 

 disturbance closed-loop system transfer function ( )f
CLSW s ; 

 control error closed-loop system transfer function ( )CLSW s . 

For the formation of the open-loop system ( )STW s  transfer function construct 

open-loop ACS unit diagram (see fig. 1.6.): 
 all the impacts and blocks, which are not the parts of the main control loop not 
taking into account; 
 the primary feedback is broken, and it’s circuit is considered as an extension of 
the forward path of reference signal g passing (see fig. 1.6.) 

 

 
Fig. 1.6. Open-loop ACS unit diagram 
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Then we can write an equation for the open-loop system transfer function 

( ) ( ) ( ) ( ) ( ).FB
OLS CU EA FB CSUW s W s W s W s W s     (1.3) 

Let’s use superposition principle for any influence closed-loop ACS transfer func-
tion obtaining. Unit diagram for reference-signal control closed-loop system obtaining is 
represented on fig. 1.7. 

 
Fig. 1.7. Reference signal control ACS unit diagram 

 
System transfer function has form 

 
( ) ( ) ( )

( ) .
1 ( ) ( ) ( ) ( )

g
g CU EA CSU

CLS FB
CU EA FB CSU

W s W s W s
W s

W s W s W s W s

 


  
 (1.4) 

Analyzing equation obtaining (1.4), one can note, that transfer function 
numerator is a transferfunction ( )g

STW s  is a part of system between the system 
input and output point. Therefore expression (1.4) could be represented in the 
form: 

 
( )

( ) .
1 ( )

g
g ST

CLS
OLS

W s
W s

W s



 (1.5) 

Unit diagram for closed-loop system transfer function in the disturbance is repre-
sented in fig. 1.8. 

 
Fig. 1.8. Unit diagram of disturbance ACS 

 
Then transfer function expression has form: 

( )
( ) .

1 ( ) ( ) ( 1) ( ) ( )

f
f Plant

CLS y FB
CU EA FB CSU

W s
W s

W s W s W s W s


     
 

Or 

 
( )

( ) ,
1 ( )

g
f
ПР

ЗС
PC

W s
W s

W s



 (1.6) 

where ( )f
STW s  – transfer function of the disturbance signal straight passing. 

Unit diagram for the closed-loop system transfer function ( )CLSW s  for the control 

error is represented in fig. 1.9. 
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Fig. 1.9. ACS unit diagram for the control error 

 

 
( ) ( )

( ) ,
1 ( ) ( ) ( ) ( ) 1 ( )

g
CSU ST

CLS FB
CU EA FB CSU OLS

W s W s
W s

W s W s W s W s W s


  

   
 (1.7) 

Analyzing equations (1.5)-(1.7), could be made the conclusion that closed-loop 
transfer function for any influence z  equals to  

 
( )

( ) ,
1 ( )

F
ST

CLS
OLS

W s
W s

W s



 (1.8) 

Where ( )Z
STW s is transfer function between the error signal f  input and output of 

system. 
Obtaining system transfer functions expressions, it is necessary to reduce them to a 

simple fraction. 
Example 1.5. Get all the direct current motor rotation frequency ACS transfer func-

tions, make unit diagram (fig. 1.3) 
Solution  
Let’s make open-loop ACS unit diagram, breaking feedbacks, loping off reference 

signal inU  and disturbance LM  

 
Fig. 1.10. Open-loop ACS unit diagram 

 

1 1
2( ) .

( 1) ( 1) ( 1)
EA SM RD G M TG FB

OLS
SM G E EM EM

K К К К К К К
W s

T s T s T T s T s

     


    
 

Let’s use superposition principle, equal 0LM   and make closed-loop ACS unit 

diagram for reference signal inU .  

 
Fig. 1.11. ACS unit diagram for reference signal 

 
Let’s get closed-loop ACS transfer function for reference signal inU : 
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1 1

1 1

1 1

1 1

2

2

2

( ) ( 1) ( 1) ( 1)
( )

1 ( )
1

( 1) ( 1) ( 1)

( 1) ( 1) ( 1)

in

in

EA SM RD G M
U

U ST SM G E EM EM
CLS

EA EA RD G M TG FBOLS

SM G E EM EM

EA SM RD G M

SM G E EM EM EA SM RD G M

K К К К К

W s T s T s T T s T s
W s

K К К К К К КW s
T s T s T T s T s

K К К К К

T s T s T T s T s K К К К К







    
  

 
    


     

.
TG FBК К

 

Let’s equal 0inU   and make closed-loop ACS unit diagram for disturbance LM  

 
Fig. 1.12. ACS unit diagram for disturbance f 

 
Now represent closed-loop ACS transfer function for disturbance as: 

2

1 1

2

1 1

2

2

2

( ) ( 1)
( )

1 ( )
1

( 1) ( 1) ( 1)

( 1) ( 1)

( 1) ( 1) ( 1)

L

L

M
M

M ST E EM EM
CLS

EA SM RD G M TG FBOLS

SM G E EM EM

M SM G

SM G E EM EM EA SM RD G M TG FB

К

W s T T s T s
W s

K К К К К К КW s
T s T s T T s T s

К T s T s

T s T s T T s T s K К К К К К К










  
 

    

    
 

     

 

1.4 Differential Equation of ACS 

Having obtained the closed-loop system transfer function for the reference signal 

( )g
CLSW s  and disturbance ( )f

CLSW s , ACS unit diagram depicted in fig. 1.5 can be repre-

sented in form (fig. 1.13):  

 
Fig. 1.13. ACS unit diagram 

 
Let’s write the ACS output signal equation in image S  

 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ),g f
CLS CLSX s X s X s W s G s W s F s       (1.9) 

where ( ), ( )G s F s  are the images of reference signal ( )g t  and disturbance ( )f t . 

Let’s introduce the notation 
( )

( )
( )

g
CLS

B s
W s

A s
 ; 

( )
( )

( )
f

CLS

C s
W s

A s
  and write (1.9):  

 ( ) ( ) ( ) ( ) ( ) ( ),A s X s B s G s C s F s       (1.10) 
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where ( ), ( ), ( )A s B s C s  is polynomial of image S: 

1 2
1 2( ) ( )O

n n n
nA s a s a s a s a            ; 

0 1
1( ) ( )m

m mB s b s b s b         ; 
1

0 1( ) ( )l l
lC s c s c s c         . 

Then (1.10) has a form: 

0 1 2 0 1

1
0 1

1 2 1( ) ( ) ( )

( ) ( ) ( ).

m

l l
l

n n n m m
na s a s a s a X s b s b s b

G s c s c s c F s

                      

          

 

If the transfer function denominator ( )A s  equals to zero, we obtain the character-

istic equation: 
1 2

0 1 2 1( ) 0.n n n
n nA s a s a s a s a s a 
                (1.11) 

Solving this equation, characteristic equation roots 1 2 1, , ,n ns s s s    are defined. 

Switching from signal images to their originals and replacing 
d

s p
dt

  , we get ACS 

differential equation: 

0 1 2

0 1 0 1

1 2
2

1 2

1 1
( ) ( )

1 1

( ) ( ) ( )
( )

( ) ( )
( ).m l

n n n
n

nn n n

m m l l
f t f t

m m l l

d X t d X t d X t
a a a s a X t

dt dt dt

d g t d g t d d
b b b c c c f t

dt dt dt dt

 


 

 

 

       

             

(1.12) 

Example 1.6. Get DCM rotation frequency ACS differential equation, its unit dia-
gram is represented on fig. 1.5.  

Solution. 
Let’s write the output signal equation  in image s , using the following equation 

(1.9). 

1 1

1 1

2

1 1

2

2

( ) ( ) ( ) ( ) ( )

 (s) +
( 1)( 1)( 1)

( 1) ( 1)
(s) 

( 1)( 1)( 1)

in LU M
CLS in CLS L

EA SM RD G M
in

SM G E EM EM EA SM RD G M TG FB

M SM G
L

SM G E EM EM EA SM RD G M TG FB

s W s U s W s M s

K К К К К
U

T s T s T T s T s K К К К К К К

К T s T s
M

T s T s T T s T s K К К К К К К







    

 
   

  
 

   

 

Switching from signal images to their originals, and replacing s p , we obtain 

DCM rotation frequency ACS differential equation: 

1 1

1 1 2

2(( 1)( 1)( 1) ) ( )

( ) ( 1) ( 1) ( ).
SM G E EM EM EA SM RD G M TG FB

EA SM RD G M in M SM G L

T p T p T T p T p K К К К К К К t

K К К К К U t К T p T p M t

     
          

Using the numerical values of system parameters and replacing
d

p
dt

 , the obtained 

equation could be written in form (1.12). 
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1.5 ACS Stability Estimation According to Characteristic Equation 
Roots 

Solution of differential equation (1.12) for the known ( )g t , ( )f t  is the variation 

law of output control variable ( )X t . It’s necessary to implement inverse Laplace trans-

form to equation (1.9) for ACS transient process finding:  

 

1 1
1 2(t) ( ) ( ) ( ) ( ) ( ) ( )

1 1
( ) ( ) s ( ) ( ) s.

2 2

[ ] [ ]g f
CLS CLS

g f
CLS CLS

j j
st st

j j

X L X s X s L W s G s W s F s

W s G s e d W s F s e d
j j 

 

 

 

 

      

      
(1.13) 

If integrals (2.13) are “unsolvable”, the Heaviside formula for transient process 
definition is used: 

 
1

(0) ( )
( ) ,

(0) ( )
is ti

in
i i i

nB B s
X t U e

A s A s

 
   

     (1.14) 

where inU  is the input signal amplitude; (s )iA  is the derivative value of numerator 

transfer function for value is ; n is the roots number of system characteristic equation. 

System characteristic equation roots (fig. 1.14) can be real (root 1s ), complex-

conjugative ( 2 3 7 8, , ,S S S S ) and imaginary ( 5 6,S S ). Furthermore, roots can be located: in 

the loft half plane, in the right half plane or on the ordinate axis and respectively will be 
left, right or neutral. 

The system will be stable, if the transient process for t   tend to the steady-
state value ( ) SSX X  . This means that exponent index of equation (1.14) must be 

negative, i.e. all the system characteristic equation roots must be located in the left half 
plane (fig. 1.14). 

 
Fig. 1.14. Variation of characteristic equation roots location 

 
Root stability criterion: 
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The necessary and sufficient condition for the system to be stable is that all the sys-
tem characteristic equation roots were in the left half plane (have a negative real part). 

If among the system characteristic equation roots even one is from the right half 
plane and the rest are from the left , it means that ACS is unstable. 

If among the system characteristic equation roots even one is neutral, and the rest 
are from the left half plane, it means that ACS is neutral, that is situated on the stability 
boundary. 

Example 1.7. Estimate the stability according to DCM rotation frequency ACS 
characteristic equation roots. 

Solution. 
Let’s use the system characteristic equation 

1 1

2( ) ( 1) ( 1) ( 1)

.

SM G E EM EM

EA SM RD G M TG FB

A s T s T s T T s T s

K К К К К К К

      

      
 

Take equation to the form: 

 
   

1 1

4 3

2

( ) ( )

( )

1 0.

SM G E EM SM G EM SM G E EM

SM G EM E EM SM G EM

EA SM RD G M TG FB

T T T T s T T T T T T T s

T T T T T s T T T s

К К К К К К К

    

      

  

 

Set system parameters: 0,02 sec; 0,5 sec; 0,1sec; 0,7 sec;E M SM GT T T T     

1 115; 15; 0.2; 8; 8.5; 0.15; 0.5EA SM RD G M TG FBK K K K K K K        

Let’s calculate the system characteristic equation coefficients: 

0 0.1 0.7 0.02 0.5 0.0007a      ; 

1 0.1 0.7 0.5 (0.1 0.7) 0.02 0.5 0.043;a          

2 (0.1 0.7) 0.5 0.02 0.5 0.41a       ; 

3 0.1 0.7 0.5 1.3a     ; 

4 15 0.6 0.2 8 8.5 0.15 0.5 1 13.24a          . 

Using MatLab, we obtain roots values of system characteristic equation  
>> W=tf([12.24],[0.0007 0.043 0.41 1.3 13.24]) 
 Transfer function: 
 12.24 
------------------------------------------------- 
0.0007 s^4 + 0.043 s^3 + 0.41 s^2 + 1.3 s + 13.24 
>> pole(W) 
ans = 
–50.3881  
 –11.3604  
 0.1600 + 5.7460i 
 0.1600 – 5.7460i 
 
Conclusion: roots 2 3,s s  are locating in the right half plane, therefore, DCM rota-

tion frequency ACS is unstable for the given parameters. 
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1.6 ACS Stability Estimation According to the Mikhailov Stability 
Criterion 

It is necessary to get Mikhailov curve equation for the ACS stability estimation. 
Let’s use closed-loop characteristic equation (1.11) for these purposes 

0 1 2
1 2

1( ) 0.n n n
nnA s a s a s a s a s a 

               

To get the Mikhailov curve equation it is necessary to go to the frequency domain, 
substitute s j , separating real and imaginary components 

0 1 2
1 2

1( ) ( ) ( ) ( ) ( )

( ) ( ).

n n n
n

n

D j a j a j a j a j

a U jV

    
 

 
            

  
(1.15) 

Where ( ), ( )U V   are real and imaginary components of Mikhailov curve equation. 

According to the equation (1.15), when the   is changing, one can draw the 
Mikhailov curve (fig. 1.15). 

 

 
Fig. 1.15. Mikhailov curves for stable systems with 1, 2; 3; 4n n n n     

 
For ACS stability necessary and sufficient conditions should hold:  

 when 0   Mikhailov curve locus should begin in the positive 
part of the real axis; 
 when 0     is changing, Mikhailov curve locus should: se-
quentially, without vanish, in the positive (counterclockwise) derection pass 
n quadrants. 

If the Mikhailov curve locus for the concrete frequency that does not equal zero 
pass through the coordinate origin, the system is neutral. 

If any of these conditions are not fulfilled, the system is unstable. 
Example 1.8. Estimate DCM rotation frequency ACS stability using Mikhailov cri-

terion. 
Solution. 
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Let’s use characteristic equation and system parameters from the example 1.7. 
4 3 2( ) 0.0007 0.43 0.41 1.3 13.24A s s s s s     . 

For the Mikhailov curve equation obtaining substitute in A(s) js   and sepa-

rate real and imaginary components.  

   

4 3 2

4 3 2

4 2 3

( ) 0.0007 ( ) 0.043 ( ) 0.41 ( ) 1.3 ( ) 13.24

0.0007 0.043 0.41 1.3 13.24

0.0007 0.41 13.24 0.358 1.3 .

D j j j j j

j j

j

    

   

   

         

           

         
 

Varying   from 0 to 6.5, one can draw the Mikhailov curve (fig. 1.16). 

5 0 5 10 15
2

1

0

1

2

3

Im D ( )( )

Re D ( )( )  
Fig. 1.16. Mikhailov curve for   from 0 to 6. 

12 13 14 15 16
400

300

200

100

0

100

Im D ( )( )

Re D ( )( )  
Fig. 1.17. Mikhailov curve for   from 0 to 10. 

 
Conclusion: not all the Mikhailov stability requirements are fulfilled: 
The order of quadrant pass is broken. 
Consequently, DCM rotation frequency ACS with the given parameters is unstable. 
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1.7 ACS Stability Estimation According to the Nyquist Stability Crite-
rion 

For the ACS stability estimation it is required to use open-loop system transfer 
function replacing s j , and draw up the locus. The special feature of this criterion is 

closed-loop ACS stability estimation on the base of open-loop form of graph. 
Open-loop ACS could be stable, unstable or neutral.Thus there are two approaches 

to the system stability estimation. 
Open-loop system is stable. 
If the open-loop system is stable, the closed-loop system is unstable for any encir-

clement of the point ( 1; 0)j . 

If the locus happens to pass through the point ( 1; 0)j , then the closed-loop sys-

tem is neutral, that means that it is boundary stable.  
On the fig. 1.18 three ACS graphs are represented. Graph 1 corresponds to the sta-

ble closed-loop ACS, 2 is neutral, 3 is unstable. 

 
Fig. 1.18. Open-loop system locuses 

 
Closed-loop system is unstable or neutral. 
In this case, if among the left half plane roots even one is from the right half plane 

or located in the coordinates origin. 
If the open-loop system is unstable or neutral, then it is necessary and sufficient 

that open-loop system locus encircled point ( 1; 0)j  in the positive direction 
2

K
 times, 

for the closed-loop system stability, where K  is number of right half plane roots of the 
open-loop system. 

Unstable open-loop system locus, which has one right half plane root is represented 
on fig.1.19. 
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Fig. 1.19. Open-loop system locus for К=1 

 
Locus encircles the point ( 1; 0)j  0.5 times in the positive direction, consequently 

the closed-loop system is stable too. 
Example 1.9. Estimate DCM rotation frequency ACS stability using Nyquist stabil-

ity criterion 
Solution. 
Let’s use DCM rotation frequency ACS transfer function 

1 1
2( )

( 1) ( 1) ( 1)
EA SM RD G M TG FB

OLS
SM G E EM EM

K К К К К К К
W s

T s T s T T s T s

     


    
. 

Let’s set system parameters:  
0.02 sec; 0.5 sec; 0.1sec;

0.7 sec; 15; 0.6; 0.2;
E EM SM

G EA SM RD

T T T

T K K T

  

   
 

1 1 110; 8.5; 0.16; 0.5.G M TG FBK K K K     

1 1

4 3 2

2( )
( 1) ( 1) ( 1)

12.24
.

0.0007 0.043 0.41 1.3 1

EA SM RD G M TG FB
OLS

SM G E EM EM

K К К К К К К
W s

T s T s T T s T s

s s s s



     
 

    


   

 

Let’s define open-loop system characteristic equation roots, using Matlab. 
 W=tf([12.24], [0.0007 0.043 0.41 1.3 1]) 
 Transfer function: 
 12.24 
--------------------------------------------- 
0.0007 s^4 + 0.043 s^3 + 0.41 s^2 + 1.3 s + 1 
>> pole(W) 
ans = 
 -50.5593  
 -4.8755 + 1.2244i 
 -4.8755 - 1.2244i 
 -1.1181  
Then since all the roots are located in the left half plane, let’s use the first system 

stability estimation approach. 
Let’s draw up the stable open-loop system locus, using Mathcad. (fig. 1.20 and fig. 

1.21). 
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5 0 5 10 15

8

6

4

2

2

Im W ( )( )

0

Re W ( )( ) 1  
Fig. 1.20. Nyquist locus for   from 0 to 15 

1.5 1 0.5 0 0.5

0.2

0.2Im W ( )( )

Q1

Re W ( )( ) Q0
 

Fig. 1.21. Nyquist locus for   from 5 to 45 
 
Conclusion. Nyquist locus, according to fig 1.21, encircles the point ( 1; 0)j ,  

consequently, the closed-loop system is stable. 

1.8 Hurwitz Stability Criterion. ACS Critical Gain 

Critical gain CRK  of ACS is the value of the open-loop system coefficient 

OLSK ,when the closed-loop system is neutral. It’s possible to use any stability criterion 

for the system critical gain CRK  value definition.  

Let’s consider the Hurwitz criterion to define CRK . 

This requires closed-loop system characteristic equation: 
1 2

0 1 2 1( ) 0.n n n
n nA s a s a s a s a s a 
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The principal Hurwitz determinant is formed from equation coefficients on the ba-
sis of following rules: 

 characteristic equation coefficients from 1a  are situated along the main 

diagonal of the Hurwitz determinant; 
 determinant columns are filled out with coefficients regarding to principal 

diagonal: upwards with increasing indexes, downwards with decreasing in-
dexes; 

 zeros are set instead of default coefficients. 
The rest of the Hurwitz determinant are formed from principal determinant by 

means of separating of rows (columns) number, which are equaled to sequence number of 
determinant  

1 3 5

0 2 4

1 3

... 0

... 0

0 ... 0 .

... ... ... ... ...

0 0 0 ...

n

n

a a a

a a a

a a

a

 
 
 
  
 
 
  

 

Criterion: 
It is necessary, for a stable system, that all the coefficients of the characteristic 

equation be positive: 

1 1 00, 0, ..., 0, 0n na a a a     

If even one determinant is equaled to zero, the system is neutral.  
To define critical gain CRK  it’ is enough to take only penultimate determinant and 

equate it to zero. 
Example 1.10. Define DCM rotation frequency ACS critical gain CRK  value, using 

Hurwitz criterion 
Solution. 
Before the solution it is necessary to define which coefficients make open-loop sys-

tem coefficient OLSK . For that, let’s use DCM rotation frequency ACS transfer function 

from example 1.9. and find it’s limit. 

1 1
2( )

( 1) ( 1) ( 1)
EA SM RD G M TG FB

OLS
SM G E EM EM

K К К К К К К
W s

T s T s T T s T s

     


    
. 

1 1
0

lim ( ) .OLS OLS EA SM RD G M TG FB
s

W s K K К К К К К К


         

Analyzing system characteristic equation from example 1.7 one can mention that 

OLSK  is a part only of 4a . 
4 3 2( ) 0.0007 0.043 0.41 1.3 1 0OLSA s s s s s K            

Let’s use the closed-loop system characteristic equation: 
4 3 2( ) 0.0007 0.043 0.41 1.3 1OLSA s s s s s K           

Let’s form the fourth order determinant 
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4

0,043 1,3 0 0

0,0007 0,41 1 0
( ) .

0 0,043 1,3 0

0 0,007 0,41 1

OLS
OLS

OLS

K
K

K

 
   
 
  

 

Let’s use third order determinant: 

3

0,043 1,3 0

( ) 0,0007 0,41 1 0.

0 0,043 1,3
OLS OLSK K

 
     
  

 

Expanding this determinant, we get 10.7555CRK  . 

1.9 Stability Plane Plotting in System Parameter Plane 

Using the stability criteria doesn’t give an answer to the question: “To what extent 
one can vary the system parameters saving it’s stability”. This problem was solved by 
Neimark and then being a part of control theory became known as « D-partition method» 
or «Stability plane plotting in system parameter plane». This method is graph-analytic and 
allows to define the varying range of one or two system parameters. 

The method is as follows. Varying the system parameters in certain sequence, one 
can value the parameters combinations, when the system characteristic equation roots are 
neutral (located on the ordinate axis). In the fig 1.22 represented the situation when points 
1,2,3 m  are combination of parameters C  and D , when even one of the system (1.11) 

characteristic equation roots is imaginary. Connecting these points, we get D -partition 
curve.  
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Fig. 1.22. D -partition curve in parameters plane C  and D  

 
D -partition curve divides parameters plane C  and D  into areas with different 

content of the right and the left roots. Plane area where all the system characteristic equa-
tion roots are left claims to be stable. For the stability area identification D -partition 
curve shading is used. Closed-loop system characteristic equation, where the varying pa-
rameters C  and D  are contained, is the initial equation for stability region plotting. 

The stability area plotting algorithm in a single parameter plane C : 
Varying parameter C  is detected in closed-loop system characteristic equation 

(1.11). 
The given equation is expressed with respect to the variable parameter C . 
After passing to a frequency domain, replacing s j  and separating real and 

imaginary components, D-partition curve equation is ob-
tained ( ) Re( ) Im( )N j j j    . Let’s set a frequency   from 0 to  , and plot 

one branch of D-partition curve and for   from –  to 0 – another branch. 
Causing a hatch on the branch of the D-partition, select the region of stability. 
Choose parameter C  variation limits from the stability region. 
For the chosen value C , using any stability criterion, make found region checking. 
Example 1.11. Plot stability region in plane of the parameter CRC K .Define vari-

ation limits of CRK  and critical gain CRK  value of DCM rotation frequency ACS.  

Solution. 
Let’s use closed-loop system characteristic equation from example 1.10:  

4 3 2( ) 0.0007 0.043 0.41 1.3 1 0OLSA s s s s s K            

Express OLSK  from the given equation: 
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4 3 20.0007 0.043 0.41 1.3 1.OLSK s s s s           

Let’s go to frequency domain and plot D-partition curve in the varying parameter 

OLSK  plane. 

 
Fig. 1.23. D-partition curve in the parameter OLSK  plane 

 
In the fig. 1.23 one can see that stability region is the III-rdregion. Variation limits 

 0 10.7OLSK    are chosen from this region. Therefore, critical gain value 

10.7CRK  , which coincides with the value is in the example 1.10. 

1.10 Step Response of the System and Quality Indexes of the Control 
Process. 

Performance quality of any control system is characterized by quantitative and 
qualitative indexes, which are defined by the step response curve or other dynamic system 
characteristics. System step response is the system reaction on the external influence, 
which, in general, could be the complex time function. Usually system performance is 
considered in terms of following standard influence: unit step function 1( )t , impulse func-

tion ( )t  and harmonic function. Often direct quality indexes (transient character, control 

time – St , and overshoot – ,% ) are obtained from the step response ( )h t , for unit step 

input signal 1( )t . 

Both numerator and denominator influence on step response character. If the 
closed-loop system transfer function ( )CLSW s  has no zeros, i.e. has the form: 

 
1

0 1

( ) ,
... ( )CLS n n

n

К K
W s

a s a s a A s 
  

 (1.16) 

the character of the step response is completely determined by the closed-loop characteris-
tic equation roots: 

 1
0 1 ... 0.n n

na s a s a     (1.17) 
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If characteristic equation (1.17) roots are real i iS  , the character of the step re-

sponse is monotonous, fig. 1.24 

 
Fig. 1.24. Aperiodic step responce 

 
If the roots are real i iS   and complex conjugate ,l k k kS j    and k  

complex roots much more than i  real, the character of the step response is oscillating 

(periodical), fig 1.24. 
If the pair of roots located on the ordinate axes and others in the left half plane, that 

means that the step response is oscillating with constant amplitude and frequency. The 
system is situated on stability boundary. 

If the closed-loop system characteristic polynomial roots are situated in the left half 
plane, such system is stable. If even one of roots is situated in the right half plane, and the 
others are in left, this system is claimed to be unstable. 

 
Fig. 1.25. Oscillating step response 

 
The system tendency to oscillation is characterized by a maximum value of a con-

trol variable maxh  (fig. 1. 25) or by an overshoot value – ,% . 
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max 100%,
h h

h
 




   

where h  is steady-state value of control variable after the completion of the step re-

sponse. 

 
Fig. 1.26. Qualitative indexes of step response 

 
System performance settling time is characterized by the duration of step response 

St . Settling time St  (step response duration) is defined as a period of time from applica-

tion of influence at the system input to the moment, when the following inequality is held: 

( )h t h h   , where h  is a small constant value, representing the specified accura-

cy. In the control theory it is 0.05  . 
Degree of stability   represents an absolute value of the shortest distance from real 

axes to the nearest root (or complex conjugated roots). Oscillating  is ( )tg   (fig. 1.26). 

Settling time St  and ,%  are connected with degree of stability   and oscillating   by 

following correlations: 
1 1 3

lnSt  
  


, % 100%e





  . 

For a more accurate estimation St  and   according to the correlations, it is neces-

sary for the system not to have zeros and all the system characteristic equation roots were 
located inside or on the boundary of trapezium in the roots plane fig. 1.27. 

 
Fig. 1.27. Roots qualitative indexes 
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Example 1.12. Plot DCM rotation frequency ACS step response. Define qualitative 
indexes. 

Solution. 
Let’s use the closed-loop system transfer function expression for the reference sig-

nal from example 1.5 

1 1

1 1
2( ) .

( 1) ( 1) ( 1)
inU EA SM RD G M

CLS
SM G E EM EM EA SM RD G M TG FB

K К К К К
W s

T s T s T T s T s K К К К К К К

   


     

 

Let’s set the system parameters:  
0.02 sec; 0.5 sec; 0.1sec; 0.7 sec;E EM SM GT T T T     

1 110; 0.6; 0.2 ; 8; 8.5; 0.15; 0.5.EA SM RD G M TG FBK K K K K K K        

Then 

4 3 2
+ + +

12.24
( ) .

0.0007s 0.043s 0.41s 1.3s+7.12  
inU

CLSW s   

Let’s use Matlab to plot the step response. The results are shown on fig. 1.27.  
> W=tf([12.24],[0.0007 0.043 0.41 1.3 7.12]) 
 Transfer function: 
 12.24 
------------------------------------------------ 
0.0007 s^4 + 0.043 s^3 + 0.41 s^2 + 1.3 s + 7.12 
>> pole(W) 
ans = 
 -50.4742  
 -9.7133  
 -0.6205 + 4.5124i 
 -0.6205 - 4.5124i 
>> step(W) 
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Fig. 1.28. Step response of DCM rotation frequency ACS 

 
Let’s give all the system indexes: 

max 2.71 secradh  ; 

1.72CLSh K   ; 

57.9 %  ; 

0.278 secMT  ; 

5.87 secSt  ; 

1.3 secFRT  ; 
12 4.83 secFR FRT    ; 

0.6205  ; 

  4.5123
7.27

0.6205
tg    . 

1.11 Automated Control System Control Process Accuracy Estimation 

Control accuracy research of ACS is conducted by means of the system steady-
state process analysis, i.e. the accuracy of control system is estimated by the steady-state 
errors, which is defined by the system structure (transfer functions) and influences (refer-
ence signals and disturbances). 
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1.11.1  Control error in stabilization systems 

Estimating the stabilization control system accuracy the reference signal is as-

sumed to be constant, i.e.  0( ) 1g t g t  . Total control error ( )F t of linear system, 

which functional scheme is depicted on fig. 1.29, could be represented as 

     F t g t x t   , where  g t  is the reference signal;  x t  is the output signal. 

In the image domain s  the equation can be written as 

      FE s G s X s   (1.18) 

Connection between reference signal  g t , disturbance  f t  and output signal 

 x t  in the image domain s  is established by means of transfer functions 

        g f
CLS CLSX s W s G s W F s     (1.19) 

where ( )CLS
gW s  is the closed-loop system transfer function for the reference signal ( )g t ; 

while ( )f
CLSW s  is closed-loop system transfer function for disturbance ( )f t . 

For the given control system (fig. 1.Ошибка! Источник ссылки не найден.29) 
transfer functions have form: 

 
( )

( ) ;
1 ( )

OLS
CLS

CLS

g W s
W s

W s



( )

( ) ,
1 ( )

Z Plant
CLS

OLS

W s
W s

W s





 (1.20) 

Where ( ) ( ) ( )OLS CU PlantW s W s W s   is the transfer function of the open-loop system; 

( )CUW s  is the controller transfer function; ( )PlantW s  is the object transfer function.
 
 

 
Fig. 1.29. Standard ACS unit diagram 

Substituting(1.20), (1.19) into (1.18), we get 

   ( ) ( )
1 ( ) ( ).

1 1
OLS Plant

F
OLS OLS

W s W s
E s G s F s

W W

  
       

  (1.21) 

Where  ( ) 1
1

1 ( ) 1
OLS

CLS
OLS OLS

W s
W s

W s W
 

     
 is the closed-loop system trans-

fer function for the control error. 

Therefore, total control error  FE s  consists of 2 components 

      ,F g fE s E s E s   (1.22) 

where  gE s  – control error, caused by reference signal  g t ;  fE t  – control error, 

caused by disturbance  f t . 

Using expressions (1.21), (1.22) and limiting value theorem 
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   lim ( ) lim
t s

f t s W s F s
 

   , for standard signals    0 1g t g t  ,    0 1f t f t   

systems steady-state errors can be defined according to the following expressions: 
ss ss ss
F g f    ,    (1.23) 

  00ss
g gW g   ,    (1.24) 

  00 .ss
f fxW f       (1.25) 

where ss
F  – steady-state value of the total error; ss

g  – steady-state value of the error, 

caused by reference signal; ss
f  – steady-state value of error, caused by disturbance. 

Equations (1.23)-(1.25) are static equations, which in static stationary mode 
( t   , 0s  ) connect steady-state control error values with transfer function values, 
defined for 0s  .  

The first total control error component in stabilization systems (  g t const ) 
ss
F  can be reduced to zero by scaling. Then control system accuracy will be fully charac-

terized by steady-state error SS : 

  0

0 0

0
100% 100%

ss Z
f CLS

SS

W f

g g





    . 

1.11.2  Control error in servo systems 

In servo control systems and servo drive, used in aircrafts, reference 
signal is changed with constant speed 0 . 

   0 0, ,g t v t v const       (1.26) 

or with constant acceleration 

  
2

, .
2

a t
g t a const


      (1.27) 

Control process accuracy estimated with the help of number of errors. 

          ''
' 2

0 1 ... .
2! !

n
n

SS n

c g t d g tc
t c g t c g t

n dt



          (1.28) 

where  SS t  steady-state error; 0 1, , ... ,
!
nc

c c
n

 – number of errors coefficients; 

' ' ' ( )
( ), ( ), ... ,

n

n

d g t
g t g t

dt
 – the first, the second, …, n  – derivative of reference sig-

nal. 

Coefficients 0 1, , ... ,
!
nc

c c
n

 of number of errors (1.28) expressed in 

terms of transfer function CLSW   for control error: 
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0 1

2
2

2

( )
( ) ; ;

0
0

( ) ( )
;

2! !0 0
.

CLS
CLS

n
CLS n CLS

n

W s
c W s c

s s s

c W s c W s

s n ss s




 


 

  
 

 
  

 (1.29) 

Number of errors (1.29) is restricted, both left and right. Restriction 
from the right depends on equality to zero of some derivative from the refer-
ence signal ( )g t . For example, for the standard signal 0( ) 1( )g t g t   steady-
state error is defined according to the expression 

 0 0ss с g        (1.30) 

In this case number of errors coefficient 0c  characterizes steady-state er-
ror. 

If the reference signal is changed with the constant speed (1.26), steady-
state error expressed as 

 0 0 1 0( ) ,ss t c v t c v          (1.31) 

where coefficient 1c  characterizes speed error. 
Steady-state error for the reference signal (1.27) expressed as 

2
2

0 1( )
2 2!ss

a t c
t c c a t a 
       .   (1.32) 

Coefficient 2

2!

c
 characterizes acceleration error. 

From the expressions (1.30) - (1.32) follows, that for the static, speed 
and acceleration errors elimination it is necessary equality to zero of coeffi-

cients 2
0 1, ,

2!

c
c c , respectively. For this purpose, it is necessary to provide ap-

propriate astatism order for the system.  
Under the astatism order meant degree v of the image Sv, which is situ-

ated in the open-loop system transfer function denominator. For example for 

2
( )

( )
( )CLS

B s
W s

s A s
  astatism order equals to 2. 

For the 1st order astatic systems coefficient 0c  equals to zero, for the 2nd 
order astatic systems – 0 1,c c  equals to zero, for the 3rd order astatic systems – 

2
0 1, ,

2!

c
c c equals to zero. Thereby 1st order astatic systems reproduce constant 

reference signals 0( ) 1( )g t g t   without error, systems with the 2nd order of 
astaticism reproduce reference signals, which change with the constant speed 

0 0( ) ,g t v t v const    without errors etc. 
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2 Nonlinear ACS 

ACS is considered to be nonlinear, if even one element of the system 
described by the nonlinear differential equation. Practically all the ACS are 
nonlinear. If after substitution of nonlinear system characteristic by the linear 
the ACS behavior doesn’t change, such system called linearized. Nonlineari-
ties can be: 

 accompanying, if nonlinearity is a part of the composition of ACS invaria-
ble part; 
 not accompanying, if nonlinearity is a part of synthesized ACS part; 
 essential; 
 inessential nonlinearity; 
 single-valued nonlinearity; 
 mixed nonlinearity. 

Nonlinearity is consider to be inessential, if the nonlinear component 
substitution by the linear unit doesn’t change fundamental system features 
and processes, occurring in the linearzed ACS, have no qualitative difference 
from the real system processes. 

In the unit diagrams the nonlinear element is represented by means of 
the rectangle with static characteristic or functional dependence of the output 
signal Y  from the input signal X , written inside. For a single-valued nonlin-
earity is  y F x . For mixed nonlinearity y  depends not only on output 

signal value x, but also on direction (i.e. derivative)  ,y F x px . 

Nonlinear ACS transformations have their own features. They are speci-
fied by the fact that superposition principle and commutativity rule are not 
held for them, i.e. 1 2out in iny y y  . 

Also not all the structural transformation rules are held for nonlinear 
ACS, for example: 

 it’s not allowed to transfer the  summer through a nonlinear unit; 
 it’s not allowed to rearrange linear and nonlinear units, etc. 

Nonlinear ACS transformation consists in linear units transformation, 
standing from the different sides of nonlinear element. 

2.1 ACS Differential Equation in Implicit Form 

There is no notation for the closed-loop nonlinear ACS. Therefore dif-
ferential equation obtaining approach for such type of systems is different 
from the obtaining of linear ACS equation approach. Let’s obtain close-loop 
ACS differential equation, which unit diagram represented on fig. 2.1. 



35 

 

 
Fig. 2.1. Typical nonlinear ACS bock diagram 

 

Let’s designate the linear part transfer function of nonlinear ACS  LPW s  

as 
( )

( )
( )LP

B s
W s

A s
 , then its differential equation has a form 

 ( ) ( ) ( ) ( ).A s Y t B s U t       (2.1) 

Nonlinear equation element in the implicit form 
 ( ) ( , ).Y t F x px      (2.2) 

Let’s write the equation for х(t) 
 ( ) ( ) ( ).x t g t U t       (2.3) 

Let’s put (2.3), (2.2) in (2.1) and get the closed-loop nonlinear ACS dif-
ferential equation relative to ( )U t  in implicit form. 

         ( ) ( ) , ( )A s U t F g t u t s g t u t B s       . 

Practically this equation is not used, therefore we get differential equa-
tion regarding ( ).X t  For this purpose, let’s evaluate ( )U t  from (2.3) and put 
it in (2.1), then we obtain the differential equation regarding ( )X t  in the ex-
plicit form 

 ( ) ( ) ( ) ( , ) ( ) ( ).A p x t B s F x sx A s g t       (2.4) 

If reference signal   0g t  , then free motion differential equation of nonlinear 

ACS in implicit form will be obtained from (2.4). 
 ( ) ( ) ( ) ( , ) 0.A s x t B s F x sx      (2.5) 

Due to the fact that the nonlinear ACS does not have a differential equa-
tion in explicit form, for analysis and synthesis of such type of systems fol-
lowing approaches are used: 

1st  approach. 
Accepting hypothesis of linearity of nonlinear element static characteris-

tic, ACS linearization is conducted. 
Then, in terms of the harmonic linearization method, the V.M. Popov or 

N.I. Tsipkin stability criterion, the nonlinear ACS stability is estimated.  
2nd approach. 
Mathematical model for every segment of the nonlinear element static 

characteristic is formed. 
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In terms of the system state space and taking into account the obtained 
mathematical models, nonlinear ACS description in form of 1st order differ-
ential equations is performed. Analyzing 1st order differential equation sys-
tems solutions for each segment of nonlinear static characteristic, nonlinear 
ACS stability is estimated. 

2.2 Harmonic Linearization Method Application for Nonlinear ACS 

It’s convenient to use harmonic linearization (harmonic balance) method 
for nonlinear ACS study. This method is based on frequency characteristics 
usage, applied in linear control theory. It requires taking into account some 
assumptions: 

 Unit diagram should be typical (fig. 2.1).  
 Nonlinear element characteristic should be symmetric in relation 
to the coordinate origin. 
 The system should have self-oscillation with constant amplitude 

na  and frequency n .  

 System should be autonomous, i.e. ( ) 0.g t   
 
If a closed-loop autonomous (without external influences) nonlinear sys-

tem can be represented as the compounds of the nonlinear element and a sta-
ble linear part with transfer function ( )LPW s  (fig. 2.1), then under a certain 
conditions could be applied harmonic linearization method to it. The main 
idea of this method is that the possible stable oscillations on linear part of 
nonlinear system output approximately considered to be harmonic (sinusoi-
dal).  

Let’s assume, at the nonlinear element output sinusoidal signal 
( ) sin( )x t a t    is feed. Therefore, nonlinear element output signal ( )y t  is 

also periodical and could be expanded in the Fourier series. This series con-
tains components with frequencies multiple to frequency , 2 ,...  of output 
signal ( )x t . Supposing, that this signal, passing through the linear part is fil-
tered to the extent that higher harmonics can be neglected, we write the har-
monic linearization equation of nonlinear element: 

 
' ( )

( ) ( , ) sin , cos ( ) ( ) ( ),
g a

y t F x sx F a a q a x t x t  


        (2.6) 

where , ( ), ( )t q a q a     are the harmonic linearization coefficients of nonlinear el-

ement: 

 
2

0

1
( ) sin , cos sinq a F a a d

a



    




    
  ; 
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2

0

1
( ) sin , cos cosq a F a a d

a



    




     
  . 

Equation (2.6) is a harmonic linearization equation up to highest harmonics from 
the case, when nonlinear element has the ambiguous characteristic. For the case, when 
nonlinear element has the single-valued characteristic 

 ( ) ( ) ( ).y t q a x t       (2.7) 

Expressions for the harmonic linearization coefficients ( ), ( )q a q a , definition 

represented in. 

2.3 Differential and Characteristic Equations of ACS Harmonic Line-
arization  

Harmonic linearization method application allows to obtain nonlinear ACS differ-
ential equations in the implicit form. 

For this purpose expression (2.6) or (2.7) is put into equation (2.4). As a result non-
linear ACS harmonic linearization differential equation with ambiguous or single-valued 
characteristics is obtained: 

 
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),
g a

A s X t B s q a x t s x t A s g t

           

 
 (2.8) 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )A s X t B s q a x t A s g t         (2.9) 

For the autonomous ACS expressions have the following form: 

 
' ( )

( ) ( ) ( ) ( ) ( ) ( ) 0,
g a

A s X t B s q a x t s x t


 
         

 
 (2.10) 

  ( ) ( ) ( ) ( ) ( ) 0A s X t B s q a x t         (2.11) 

For the expressions (2.8)-(2.11) nonlinear ACS harmonic linearization differential 
equation are 

 
' ( )

( ) ( ) ( ) 0,
g a

A s B s q a s


 
      

 
   (2.12) 

  ( ) ( ) ( ) 0.A s B s q a      (2.13) 

2.4 Obtaining of Typical Unit Diagram of Nonlinear ACS 

To reduce nonlinear ACS unit diagram to a standard form (fig. 2.1), use the follow-
ing rules: 

 Since the system should be autonomous, it’s necessary to discard the reference 
signal and the disturbance with the surrounding chains. 

 Due to the fact that the nonlinear element should be in a typical scheme, right 
after the main  summer, it is necessary to add one more summer at the output of the 
nonlinear element, in initial schemes. 

 If nonlinear element has time lag (thyristor transducer), then gain is realized in 
its static characteristic, and time lag remains a separate unit. 
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 Standard scheme should be drawn beginning with the included summer. 
 After nonlinear element all the other units of initial scheme, forwards the 

reference signal to the introduced  summer are drawn. 
 If the initial scheme has the local feedbacks or additional control channels, 

they also should be drawn. 
Example 2.13. Cast DCM rotation frequency ACS unit diagram with nonlinear 

DCG characteristic to typical. Obtain differential and characteristic equations of harmonic 
linearized system. Nonlinear DCG characteristics are shown on fig. 2.2. 

 
Fig. 2.2. Nonlinear DCG characteristics «saturation» 

 
Coefficient of linearization for such nonlinearity has a form 

 
2

2
2

( ) arcsin 1
k b b b

q a
a a a

 
     
 
 

; '( ) 0.q а    (2.14) 

Solution. 
Let’s use ACS unit diagram, represented on (fig. 1.4). Discard all the signals and 

represent DCG in form of two units (nonlinear element and inertial unit with transfer func-

tion 
1

( )
1DCG

G

W s
T s


 

). At the nonlinear element the input supplementary  summer is 

added (fig 2.3). 

 
Fig. 2.3. Unit diagram of DCM rotation frequency nonlinear ACS 

 
Utilizing standard unit diagram organization rules, obtain the system (fig. 2.4). 

 
Fig. 2.4.Reduction of the nonlinear ACS unit diagram to the standard 

 
Let’s obtain the transfer function of linear part of nonlinear system 
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1
2

( )
( ) .

( )( 1) ( 1) ( 1)
EA M RD M TG FB

LP
M G E M M

K К К К К К B s
W s

A sT s T s T T s T s

    
 

    
 

Using expressions (2.11) and (2.14), write differential and characteristic equations 
of the harmonic linearized system 

 

1

2

2

2

( ) ( ) ( ) ( ) ( ) ( 1)( 1)( 1) ( )

2
arcsin 1 ( ).

M G E M M

EA M RD M TG FB

A s x t B s q a x t T s T s T T s T s x t

k b b b
K К К К К К x t

a a a

     

 
       
 
   

(2.15) 

 

1

2

2

2

( ) ( ) ( ) ( 1) ( 1) ( 1)

2
arcsin 1

M G E M M

EA M RD M TG FB

A s B s q a T s T s T T s T s

k b b b
K К К К К К

a a a

         

 
            
 
 

         (2.16) 

2.5 Goldfarb Method for Nonlinear ACS Stability Estimation Applica-
tion 

The stability analysis of harmonic linearized nonlinear ACS conducted 
in 2 stages. On the first stage we take a hypothesis, that system has the self-
oscillations and define amplitude na  and frequency n  of these oscillations. 
On the second stage stability of the found periodical solution and the nonlin-
ear ACS is estimated. For these purposes the Mikhailov criterion or the Gold-
farb approach can be applied. 

The main equation harmonic balance (linearization) approach has the 
form 

 1 ( ) ( ) 0,NP LPW a W j      (2.17) 

where ( )LPW j  is the linear part transfer function of nonlinear ACS; ( )NPW a  
is the complex gain of harmonic linearized nonlinear element. 

On the basis of equations (2.6), (2.7) one can write 
( ) ( ) ( );NPW a q a j q a      (2.18) 

 ( ) ( ).NPW a q a     (2.19) 

Solving equation (2.17) regarding   and a , self-oscillation parameters 
can be defined. Goldfarb suggested to solve this problem in a graphic way, 
representing this equation as 

 ( ) ( ),LP NPW j G a       (2.20) 

where ( ) 1 ( )NP NPG a W a  are the nonlinear reverse characteristics. 

Linear part ( )LPW j  locus (fig 3.3) and nonlinear element negative 
characteristic ( )NPG a  are plot on the complex plane. Nodes of these charac-
teristics give us the equation (2.52) solution. The oscillation amplitude na  de-
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fined according to characteristic ( )NPG a , and the frequency n  defined ac-
cording to ( )LPW j . 

Fig. 3.5 shows the case when system has 2 periodic solutions: diagram 
nodes 2 ( 1 1,n na  ) and 5 ( 2 2,n na  ). 

For the positive increment of amplitude na a  , locus ( )LPW j  encir-
cles point 4 and doesn’t encircles point 11, and for negative na a   – encir-
cles point 3 and doesn’t encircles point 6.  

 
Fig. 2.5. Graphic representation of the Goldfarb approach 

 
If the locus ( )LPW j  doesn’t encircle point with positive increment of amplitude 

na a   (point 1), and encircles point with negative increment na a  , then obtained 

solution will be stable (point 2), in this case the system is stable in general. If not, found 
solution is unstable (point 5), and system is stable in small.  

Example 2.14. Using Goldfarb approach, estimate DCM rotation frequency ACS 
stability with nonlinear DCM characteristic. Nonlinear DCG characteristic represented on 
fig. 3.2. 

Solution. 
Let’s use transfer function of linear part and harmonic linearization coefficients 

from example 2.13. 

1
2( ) .

( 1) ( 1) ( 1)
EA M RD M TG FB

LP
M G E M M

K К К К К К
W s

T s T s T T s T s

    


    
 

2

2
2

( ) arcsin 1
k b b b

q a
a a a

 
     
 
 

; ( ) 0q а  . 

Let’s set the system parameters:  

1 1 1

0.02 sec; 0.5 sec; 0.1sec; 0.7 sec; 10;

0.6; 0.2;

8; 8.5; 0.15; 0.5; ; 2.

E M M G EA

M RD

G M TG FB G

T T T T K

K K

K K K K k K b

    
 
     

 

Then 
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4 3 2
6.12

( ) .
0.0007s +0.043s +0.41s +1.3s+1 LPW s   

2 2

2 2
2 8 2 2 2 2 2 2

( ) ( ) arcsin 1 5.096 arcsin 1 .
3.14NPW a q a

a a a aa a

   
             
   
   

2

2

1
( ) 1 ( ) 0.196

2 2 2
arcsin 1

NP NPG a W a

a a a

  
 

   
 
 

. 

( )LPW j  and ( )NPG a  locuses are plot on the complex plane. The results repre-

sented in fig. 3.4. 

→
∞

→∞

 
Fig. 2.6. ( )LPW j  and ( )LPG a  locuses 

 
Conclusion. Locuses cut across, therefore, there is general solution of equation 

(2.52). Obtained solution is stable and ACS is stable in general.  

2.6 Application of Popov Stability Criterion for Nonlinear ACS Stabil-
ity Analysis 

The frequency criterion research of the nonlinear ACS equilibrium posi-
tion absolute stability was introduced by V.M. Popov in 1959. To use this cri-
terion is necessary to take into account the following restrictions and assump-
tions: 
 unit diagram should be typical (fig. 2.1); 
 nonlinear element characteristic should be single-valued; 
 linear part of nonlinear ACS should be stable; 

 nonlinear characteristic should belong to sector  0, k  (fig. 2.7), i.e. the condition 

0 ( )f x kx   should hold. 
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Fig. 2.7.Nonlinear element characteristic 

 
For the equilibrium position of nonlinear ACS is stable, the following 

inequality should hold 
   1Re (1 ) ( ) 1 0,LPj W j k          (2.21) 

for all 0  , where   is unconditioned real number. 
In other words, if the final real number   can be chosen in such a way 

that inequality (2.53) held, the equilibrium position of closed-loop ACS is 
absolutely stable. 

As it follows from the criterion statement, he gives just necessary, but 
not sufficient condition of stability, i.e. system could be stable when this cri-
terion is not held. 

This inequality (2.21) is called Popov inequality, its graphic solution is 
used on practice. The transformed frequency characteristic of ( )LPW j  linear 
part is introduced into consideration for convenience. 

 

* *

*

*

( ) ( ) ( );

( ) Re( ( ));

( ) Im( ( )).

LP

LP

LP

W j U jV

U W j

V W j

  

 

  

 



 

   (2.22) 

Let’s extract real component from the square bracket in inequality (2.21)
 : 

   Re (1 ) ( ) Re (1 ) Re( ( )) Im( ( ))

Re( ( )) Im( ( )).
LP LP LP

LP LP

j W j j W j W j

W j W j

    
  

      

  
Taking into account the equations (2.22) write inequality (2.21) in form 

 * *( ) ( ) 1 0.U V k        (2.23) 

Solution of equation (2.54) reduced to following (fig. 3.5):  
When varying frequency   from 0 to  , the transformed frequency 

characteristic of linear part * ( )LPW j  is plot on the complex plane, and a 
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straight line under any angle   is drawn though the point  11 ; 0k j  (fig. 

2.8а). 
Popov criterion. 
For the nonlinear ACS equilibrium position was stable, all transformed 

frequency characteristic linear part * ( )LPW j  locus is necessary to be located 
on the right side from the straight line, drawn under any angle  , through the 
point  11 ; 0k j . Where 1k  is the straight line slope ratio, restricting sector 

(0, 1k ). 
 

 
a) 

 
b) 

 
c) 

Fig. 2.8. Popov inequality solution 
According to fig. 2.8, for the case а) ACS equilibrium position is abso-

lutely stable; for b) and c) Popov criterion is not held, but the system can be 
stable. 
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Example 2.15. It is necessary to estimate DCM rotation frequency ACS 
stability with nonlinear characteristic of DCG, using Popov criterion. 

Nonlinear characteristic parameters of DCG: 1 8; 4; 0.1.GK b m    
Solution.  
Let’s plot the nonlinear characteristic of DCG taking into account its pa-

rameters (fig. 2.9). 

 
Fig. 2.9. Nonlinear characteristic of DCG 

 
Let’s use linear part transfer function and system parameters from the 

example 2.14 

4 3 2
6.12

( )
0.0007 +0.043 +0.41 +1.3 1 LPW s

s s s s


 . 
Bode plot of transformed frequency characteristic linear part  *

LPW j  

and point ( 0.139; 0)j . 
Plot results represented in fig. 2.10. 

 
Fig. 2.10. Popov criterion application for the system stability estimation 
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Conclusion. The Popov criterion is held, because it is possible to draw 
the straight line under any angle through the found point, in such a way that 
all the Bode plot located on the right side of the straight line. 

2.7 V.M. Popov Stability Criterion Application for the Case of Neutral 
or Unstable Linear Part 

In case when the linear part is neutral or unstable, the Popov criterion is 
inapplicable. For the Popov criterion generalization for the given case, the 
unit diagram transformation is made in such a way that the linear part was 
stable. For this, in the unit diagram in parallel with the nonlinear element 
proportional link with the transfer ration – r is introduced, and the linear part 
is covered by a negative feedback with the transfer ratio r (fig. 2.11).  

 
Fig. 2.11. Unit diagram transformation 

 
Let’s write the transfer function of transformed linear part of nonlinear 

ACS 

1

( )
( ) .

1 ( )
LP

LP
LP

W s
W s

W s r


 
 

Value r is chosen in such way, that the transformed linear part of non-
linear ACS becomes stable. 

According to the Popov criterion statement: the system equilibrium po-
sition is absolutely stable, if the following inequality is held: 

1
1

1
Re[(1 ) ( )] >0,LPj W

k
     

and the nonlinear element f1(х) characteristic should be located in sector 
 10,k , i.e. 

1 1 10 ( ) ; ( ) ( ) .f x x k f x f x rx     

Both expressions could be reduced to initial: 

1

( ) 1
Re[(1 ) ] >0,

1 ( )
LP

LP

W
j

W K




  


 

1

( )
.

f x
r K r

x
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Nonlinear characteristic should be located in sector  1,r k r . If linear 

part of nonlinear ACS is neutral, then r should be extremely small value. 

3 LINEAR PULSE ACS 

Depending on signal transmission and transformation methods ACS can 
be divided into: 

 continuous ACS; 
 discrete ACS. 

In the continuous systems signals during the transformation process are 
not interrupted. There are elements or units, which transform continuous sig-
nals into the pulse sequence, or quantized signals series, or the digital code in 
discrete systems. In many modern ACS the discrete devices or digital proces-
sors are used. 

Discrete method of signals transmission and transformation supports 
their amplitude quantization or time quantization, or amplitude and time 
quantization. There are 3 types of quantization and 3 groups of discrete ACS: 

1. Amplitude quantization. In this case the signal is fixed in some dis-
crete levels. For the amplitude quantization the multiposition relay element is 
used, represented in fig 3.1, its static characteristic represented in fig. 3.2: 

 
Fig. 3.1. Multiposition relay element 

 

 
Fig. 3.2. Multiposition relay element characteristic 

 
Results of amplitude quantization are represented in fig.3.3, where pX  – 

quantized signal. 
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Fig. 3.3. Level quantization 

 

Since the relay element is used as a continuous signal  X t  quantizer, 

then the discrete ACS also called relay ACS. Such type of discrete systems 
refers to nonlinear ACS type, and for their analysis and synthesis the nonlin-
ear system theory is used. 

2. Time quantization. In this case continuous signal is fixed in discrete 
moments of time: 0, , 2 , 3T T T etc. Continuous signal quantization can be ob-
tained by passing continuous signal through the switch (fig. 3.4), which peri-
odically, with the quantization cycle T , closed on time h . In the discrete 
ACS this element is called the pulse element. Quantization result is repre-
sented in fig. 3.5. 

 
Fig. 3.4.Pulse element 
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Fig. 3.5.Time quantization 

 
If pulse h  duration essentially smaller then quantization cycle T , and 

after the switch situated linear unit with time constant Т>>h, then pulse se-
quence  TX t  can be considered as series of instantenuous pulses of  -

functions, which amplitudes equale to input signal  X t  values in quantiza-

tion time (fig. 3.6).  

 
Fig. 3.6. Signal quantization for the case when Т>>h 

 
The information between the quantization periods is lost. The discrete 

signal can be represented as following: 
( ) ( ),  ,

( ) 0, ( 1) , 0,1,2,...
T T

T

X t X nT for t nT

X t for nT t n T n
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Since the pulse element is used as a continuous signal quantizer, discrete 
systems are called the pulse ACS. 

3. Amplitude and time quantization. In this case, in the discrete mo-
ments of time: 0, , 2 , 3T T T etc., the continuous function  X t  values are 

chosen and fixed on the nearest specified level. The results of the amplitude 
and time quantization are represented in fig. 3.7. 

 
Fig. 3.7.Amplitude and time quantization 

Quantization is implemented by the code pulse modulator or the analog-
to-digital converter (ADC) embedded into the computer. Therefore the dis-
crete ACS of such type called digital. 

The amplitude quantization introduce nonlinearity in the digital system, 
but for ADC capacity 32 and higher, differences between the signals at the 
nearby lying levels are not significant. Therefore, amplitude quantization can 
be neglected. Moreover, the pulse ACS and the digital are united by one fea-
ture – time quantization is realized by the pulse element. Hereby for analysis 
and synthesis of the digital systems pulse ACS theory can be applied. 

The continuous signal transformation to pulse sequence process, which 
parameters depend on this signal value in discrete moments of time, called 
the pulse modulation. Continuous signal called system input signal of pulse 
element or modulator, and output – pulse modulated sequence. 

Depending on which pulse parameter (amplitude, duration, phase) is 
modulated by continuous signal, there are: the pulse-amplitude modulation 
(PAM), the pulse-duration modulation (PDM), the pulse-phase modulation 
(PPM). Also possible modulation, when amplitude, duration and phase are 
constant, and the pulse period or pulse frequency at the modulator output is 
the continuous signal function at the modulator input. Such type of modula-
tion called the pulse-frequency modulation (PFM). 
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If the modulated parameter of the pulse sequence is defined by the input 
signal values in the fixed equidistant moments of time and remains constant 
on all the period of pulse existence, then such a modulation called the pulse 
modulation of the first type. There may be instances when the modulated pa-
rameter of the pulse sequence on all the period of pulse existence changes ac-
cording to the current input signal value. Such modulation called the modula-
tion of the second type. 

First type pulse-amplitude modulation ACS refers to the category of lin-
ear system, therefore only the linear pulse ACS analysis and the design theo-
ry will be considered. 

Linear pulse system is an automated control system, which besides 
units, described by the linear differential equations, has the pulse element, 
which transforms input signal into pulse sequence. 

3.1 General Pulse System Unit Diagram 

Single-circle pulse ACS can be represented as the interacting pulse and 
the continuous ACS parts (fig. 3.8). 

 
Fig. 3.8. Functional scheme of pulse system. 

 
Plant, amplifying element and execution unitare usually a part of con-

tinuous part of the system. The pulse part is usually a control unit and con-
sists of functional elements, which participate in the pulse signal transfor-
mation. This part can be realized by switches, modulators, pulsecontrollers, 
digital computing devices with the analog-digital and the digital-analog con-
verters etc. 

Functionally a pulse part can be considered as some continuous signal 
transformer into the pulse reference signal of any type. In linear pulse-
amplitude systems output signal of pulse part is a pulse sequence, which am-
plitudes are proportional to the continuous signal values, in the equidistant 
quantization moments T . In the simplest case the pulse part is a real pulse 
element or a pulse modulator. 
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When studying the pulse systems their real pulse elements are usually 
substituted by successive connection of the ideal pulse element (IPE) and the 
forming unit (FU) (fig. 3.8).  

The ideal pulse element under the influence of continuous input signal 
 x t  (fig. 3.9) form ideal instantenuous pulses  *x t  of  -function type, 

which «amplitude areas» are equal to the input signal values in quantization 
moments. Usually the gain of pulse element refers to the continuous system 
part, considering the ideal pulse element transmission gain equaled one. 

 
Fig. 3.9.Signal forming by real pulse element 

The forming unit transform these pulses into signals  u t  of the re-

quired form. Forming unit is pulse-amplitude modulator. Forming element 
response to instantenuous pulse of sequence  *x t  coincide with the real 

pulse sequence  u t  at the real pulse element output. In practice, most often 

the data-hold device of zero order with the transfer function (2.56) is used as 
a forming unit 

 
1

( ) .
T s

FU

e
W s

s

 
     (3.1) 

For the convenience of system analysis the forming unit is combined 
with the continuous part. In this case independently of real pulses form, pulse 
systems with amplitude modulation can be represented as the combination of 
ideal pulse element and reduced continuous part (fig. 3.10). Output signal of 
pulse system reduced continuous part is continuous signal, described by time 
function  y t . To apply the discrete Laplace transform it is accepted to con-

sider this signal in discrete moments of time, coinciding with moments of 
ideal pulse element shorting at input. This is equivalent to fictitious ideal 
pulse element switching on (fig. 3.10) at the systems output, operating syn-
chronously and in-phase with the main pulse element. Reduced continuous 
part (RCP) reaction on -functions is a sum of pulse (weighting) step re-
sponse ( )w t . The transfer function of the reduced continuous part is equaled 
to 
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 ( ) ( ) ( )RCP FU CPW s W s W s    (3.2) 

Unit diagram of pulse ACS depicted in fig. 3.10. 

 
Fig. 3.10. Unit diagram of pulse ACS 

 
Example 3.1. Form unit diagram of DCM rotation frequency pulse ACS. 
Solution. 
Let’s place the simplest pulse element and the pulse former after the summer in the 

unit diagram of DCM rotation frequency ACS, represented in fig. 1.4. On the basis of fig. 
3.10 the pulse system unit diagram can be formed (fig. 3.11). 

 
Fig. 3.11. DCM rotation frequency pulse ACS unit diagram 

 

where ( )FB FB TGW s K K  ;  

1 1
2( )

( 1) ( 1) ( 1)
EA M RD G M

CP
M G E M M

K К К К К
W s

T s T s T T s T s

   


    
. 

3.2 Mathematical Tools of Pulse Systems 

3.2.1 Lattice function and differential equation 

Reduced continuous part response only to discrete values of the contin-
uous signal in quantization moments nT. Therefore, continuous function x(t), 
defining continuous signal, can be substituted by appropriate lattice function 

( ) ( )x nT x t for t nT  ; 

 ( ) 0 1 ,x nT for nT t n   
 
where 0,1,2,...n   

Thereby, for the lattice function obtaining according to specified contin-
uous function x(t), it is necessary to substitute in continuous function t by nT  
(fig. 3.12).  
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Fig. 3.12. Function  x t  and its lattice function  x nT  

 
Lattice functions describe their “generative” continuous functions only 

in discrete moments of time, coincident with quantization moments. In inter-
vals between the quantization moments the information about continuous 
functions changes is absent. If the quantization interval Т is set, then the lat-
tice function  x nT  of function  x t  is uniquely determined. The converse 

proposition is false. 
For the identification of the continuous function behavior between quan-

tization moments, the intermediate fixed time t= is introduced. In this case 
continuous function x(t) can be substituted by shifted lattice function 

( , ) ( )x nT T x t for t nT T    . 

Varying T  from 0 to T , collection of lattice functions  ,x nT T , 

1,2,3,...n  can be obtained, which defines the function  x t  for all t  values. 

When analyzing the continuous systems the differential equations are 
used, defining relationship between the continuous function  x t  and its de-

rivatives 
 k

k

d x t

dt
. Similarly, the correlation between the lattice function  x n  

and its difference  k x n  defines finite-difference equation or differential 

equation. If this correlation is linear, so the differential equation is called lin-
ear. 

Linear differential equation with constant coefficients can be represent-
ed in the following form 

 1
1 0( ) ( ) ( ) ( ),k k

k ka x n a x n a x n f n
        (3.3) 

or 
 1 0( ) ( 1) ( ) ( ),k kb x n k b x n k b x n f x         (3.4) 

where  f n  is the certain lattice function,  x n  is the desired lattice func-

tion, represents the solution of the difference equation.  
This differential equation, which contains  x n  and  x n k  called the 

differential equation of k-order. Classical approaches to differential equations 
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solution in many respects analogous to the classical methods differential 
equations solution.  

Differential equation solution gives the output signal values only in dis-
crete moments of time t nT . In many cases it’s rather enough for the sys-
tem behavior estimation. If appears the necessity in output signal information 
obtaining, the offset sequence is used. 

In case, when   0f n  , equations (3.3) and (3.4) called homogenous. 

3.2.2 Z-transform application 

For sequences f(n) discrete Laplace transform concept, defined by the 
expression (2.60), can be introduced 

 
0

( ) ( ) ( ) .T

i

snF s D f n f n e






     (3.5) 

In expression, like in case of the continuous Laplace transform, complex 
value s c j  , where c  is the abscissa of absolute convergence. If c   , 
then series, defined by the expression (3.5), convergences, and some expres-
sion corresponds to the original  f n . 

Z -transform is widespread for the pulse systems research, which is 
connected with the discrete Laplace transform. 

Under Z -transform one understand sequence of images, defined by the 
expression 

 
0

( ) ( ) .
i

nF z f n z




    (3.6) 

Here new notation is introduced STz e .  
Principle rules and theorems in respect to Z -transform are also true for 

discrete Laplace transform. 
If image  F z  is represented in the simplest table form, then transition 

to original doesn’t make any difficulty. Complex fractionally rational form 
can be represented in form of the first order sum, then z -transform table can 
be used for original obtaining from every simple fraction. 

Moreover, if  F z  is a ratio of two polynomials 
( )

( )
( )

B z
F z

A z
 , then ana-

logue of the Heaviside decomposition expression, used for continuous sys-
tems, can be applied. 

1

(1) ( )
( )

(1) (1 ) '( )

l
i

i i i

n
i

B B z
f n z

A z A z

 
 , 

where ' ( )A z  is the derivative ( )A z  for z , and iz  are the denominator roots 
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( 1,2, ,i l  ). 

Depending on the numerator polynomial order  F z  and on roots, the 

decomposition formula can be changed. 
Moreover,  F z  can be expanded in a Laurent series (series in decreas-

ing orders of z ) 
1

0 1( ) k
kF z C C z C z      , 

where        0 1 20 , 1 , 2 , , kC f C f C f C f k     etc. 

Series expansion can be performed in any manner, because such expansion is 
unique. Most suitable approach for the fractionally rational functions is dividing numera-
tor and denominator. 

Applying the Laurent series expansion, the original values of  f n  or 

 ,f n   can be calculated in the discrete points without definition of images 

 F z  poles. 

0 1 2( ) ( ) ( 2 ) .... ( ) ....kf n C C C Ct T t T t k T                (3.7) 

3.3 Sampling Theorem 

If the continuous dependence, in the result of quantization substituted by 
the lattice function, loss of data is taking place. Such data loss occurs also as 
the result of pulse modulator work. In limit, for the infinite quantization fre-
quency, the continuous signal comes out. However, the low quantization fre-
quency limit is of the most interest. If the frequency is too low, the continu-
ous signal can considerably change in one interval. Therefore, initial signal 
restoration may appear to be impossible, with the help of its lattice function. 

Let’s define the condition, which fulfillment allows restoring initial sig-
nal completely. 

Let’s assume, continuous part of pulse system has amplitude-frequency 
characteristic, represented in fig. 3.13, with the bandwidth from 0 to c . 

 
Fig. 3.13. Low frequency bandwidth of pulse ACS 
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The sampling theorem was stated and proved by V.A. Kotelnikov in 
1933. According to this theorem, if the signal doesn’t contain the frequencies 
higher then c , it is entirely described by its values, measured in discrete 
moments of time with the interval cT   . 

Thereby, quantization period must be 
 ,cT         (3.8) 

Example 3.2. Applying sampling theorem define quantization period of 
DCM rotation frequency pulse ACS. 

Solution. 
Let’s use the system parameters from example 2.9 and continuous part 

transfer function from example 2.16: 

1 1

0.02 sec; 0.5 sec; 0.1 sec; 0.7; 15;

0.6; 0.2; 10; 8.5; 0.16; 0.5
E M M G EA

SM RD G M TG FB

T T T T K

K K K K K K

    
     

 

 

1 1

4 3 2

2( )
( 1) ( 1) ( 1)

153
.

0.0007 0.043 0.41 1.3 1

EA M RD G M
CP

M G E M M

K К К К К
W s

T s T s T T s T s

s s s s



   
 

    


   

 

To plot the continuous part amplitude-frequency characteristic Mathcad is used. 

The continuous part bandwidth CP  is restricted to 10% from max ( )CPH  . 

Results are represented in fig. 3.14. Let’s chose 3.25 secCP rad   
from the plot and, using expression (3.8), define pulse system quantization 
period 3.14 3.25 0.97 sec.CT      

0 2 4 6 8

50

100

150

200

H ( )

K ( )

  
Fig. 3.14. Continuous part amplitude-frequency characteristic, 

3.25 secCP rad  . 
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3.4 Pulse Transfer Function of Open-Loop Pulse System 

Let’s consider unit diagram depicted in fig. 3.15, pulse transfer function 
of the open-loop ACS for the case, when   1FBW s  . 

 
Fig. 3.15. Closed-loop pulse ACS unit diagram 

 
The direct Laplace transform expression (L-transform) of continuous 

function  x t  has the form 
0

( ) ( ) stX s x t e dt


  . 

For the pulse system study discrete analogue of this transform is used – so-called 
the direct discrete Laplace transform (LD-transform). 

0

( ) ( )
n

nsTX s x nT e


 



 . 

The difference of these transforms is, that integral in L-transform substituted by the 

sum, and instead of continuous function  x t  corresponding lattice function  x nT  is 

introduced. 

Let’s define LD -transform for output signal  *y t  of pulse system 

 
0

( ) { ( )} ( )D
n

nsTY s L y t y nT e


  



  .   (3.9) 

Since the reduced continuous part response on -function represents 
pulse step response w(t), so the signal value  y t  at the output of the reduced 

continuous part is defined from the expression: 

0

( ) ( ) ( )
i

y t w n iT x iT




  ,  

Therefore, output signal value in moments of time t nT  equals 

 
0

( ) ( ) ( ).
i

y nT w nT iT x iT




     (3.10) 

Substituting (3.10) in (3.9), obtain 

 
0 0

( ) ( ) ( ) .nsT

n i

Y s w nT iT x iT e
 

 

 

     (3.11) 

By means of substitution m n i   and n i m   expression (3.11) is 
reduced to 
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0

( ) ( ). ( ) .isT msT

i m i

Y s x iT w mT e e
 

  

 

   

Taking into account, that   0w mT   for 0m  , finally get 

0 0

( ) ( ) ( ) .isT msT

i m

Y s x iT e w mT e
 

  

 

      (3.12) 

Proceeding from the definition of LD -transform, the expression (3.12) 
can be reduced to the form 

 *( ) ( ) ( ),Y s X s W s     (3.13) 

Then 

 
0

( )
( ) ( ) ( ) ,

( )
msT

D
m

Y s
W s w mT e L w mT

X s

 
 




     (3.14) 

where ( )W s is the open-loop pulse transfer function in S-image (so-called 
pulse transfer function with an asterisk). 

Thereby, the open-loop pulse transfer function in S-form is the ratio of 
discrete Laplace transforms output to input at zero initial conditions. 

Substituting sTz e  In (3.12) Z -transform equation can be obtained, i.e. 
( ) ( ) ( ),OLSY z X z W z   

 
0

( )
( ) ( ) .

( )
m

OLS
m

Y z
W z w mT z

X z






    (3.15) 

Where  OLSW z  is the open-loop system pulse transfer function in z -

transform. Therefore, pulse transfer function of open-loop pulse system can 
be defined as ration of z-image pulse output to image pulse input at zero ini-
tial conditions. Expression (3.15) shows that the pulse transfer function is Z-
transform of the pulse transition function of system reduced continuous part, 
i.e. ( ) { ( )} { ( )}.W z Z w t Z w nT   

Thereby, to define system pulse transfer function with forming unit of uncondi-
tioned type, it is necessary: 

 to define the reduced continuous part transfer function: 

   ( )RCP FUW s W s W s ; 

 to define the pulse transition function of reduced continuous part with the help of 

inverse Laplace transform:     1
RCPw t L W s ; 

 to define the system weighting sequence (lattice weighting func-

tion):     t nTw nT w t  ; 

 to find series sum in right part of the expression: 
0

( ) ( ) .n

n

W z w nT z
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Since the  -function image equals to one, and pulse transition function 
equals to     1w t L W s , then pulse transfer function in z -form can be 

defined as ( ) { ( )}W z Z W s , i.e., knowing the transfer function expression 

 W s , and applying z -transform table,  W z  can be obtained. 

For the given case, when   1FBW s  , the pulse transfer function in z -

transform of the reduced continuous part  RCPW z  equals to the transfer func-

tion of the open-loop system  OLSW z . 

Based on the proposed approach and the unit diagram (fig. 3.16) expres-
sion of the open-loop pulse transfer function WOLS(z) in z-transform can be 
written for any case 

 ( ) ( ) ( ) ,OLS RCP FBW z Z W s W s    (3.16) 

 
Fig. 3.16. Open-loop pulse ACS unit diagram 

 
Applying the equations (3.1), (3.2), equation (3.16) can be represented 

as the following 

1
( ) ( ) ( ) .

T

OLS CP FB

se
W z Z W s W s

s

 
   


 

Taking into account, that 1Tse z  , finally write 
1 1

( ) ( ) ( ) .OLS CP FB

z
W z Z W s W s

z s

      
 

  (3.17) 

In the absence of the pulse former in ACS scheme, the expression 
 OLSW s  can be written as       OLS CP FBW z Z W s W s  . 

Z -transform table (appendix 2) allows the obtaining expressions for the 
partial fraction only. Therefore, the complex fraction should be decomposed 
into partial fractions and then the table can be applied. 

Example 3.3. Obtain pulse transfer functions of continuous and open-
loop DCM rotation frequency ACS. 

Solution. 
Let’s use the system parameters from the example 2.9 and continuous 

part transfer function expression from the example 2.16: 
 

1 1
2( ) .

( 1) ( 1) ( 1)
EA M RD G M

CP
M G E EM EM

K К К К К
W s

T s T s T T s T s
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In this example to simplify the solution, the system order reduced to the 
second order, for 0; 0G ET T  . 

1 1 153
( ) .

( 1) ( 1) (0.1 1) (0.5 1)
EA M RD G M

CP
M EM

K К К К К
W s

T s T s s s

   
 

     
 

Let’s use expression (2.71) 

1 1 1 1 153
( ) ( ) ( )

(0.1 1)(0.5 1)CP CP FB

z z
W z Z W s W s Z

z s z s s s

               
. 

Denominator roots are: 1 2 30; 10; 2s s s    . 
Applying Viete theorem, let’s decompose expression in braces on partial 

fractions: 

 

1 153

(0.1 1)(0.5 1) ( 10) ( 2)

( 10)( 2) ( 2) ( 10)

( 10)( 2)

А В С

s s s s s s

А s s B s s C s s

s s s

  
            

       


  

 (3.18) 

Left side of equation (3.18) will be equaled to right side, if their numera-
tors are equal: 

   2

153 ( 10)( 2) ( 2) ( 10)

12 2 10 20

А s s B s s C s s

A B C s A B C s A

         

        

Let’s form three equations system, choosing expression at 2 1 0, ,s s s  

  0A B C   ; 

 12 2 10 0A B C   ; 

20 153A  . 
Solving this system, obtain coefficients values 

7.65; 1.9125; 9.5625A B C    . 
Let’s use Z -transormation table (look appendix 2),  
For 0.9 sec.T   (look example 2.17) obtain 

10 2

1 7.65 1.9125 9.5625
( )

1

1 7.65 1.9125 9.5625

1 0.0001187 0.164

CP T T

z z z z
W z

z z z e z e

z z z z

z z z z

 

          
         

 

2

2

6.081 5.7693 0.3127
( )

0.164 0.00001947CP

z z
W z

z z

 


 
. 

Open-loop ACS transfer function 

 
2

2

0.4865 0.4615 0.025
( )

0.164 0.00001947OLS FB TG CP

z z
W z K K W z

z z

 
   

 
. 
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3.5 Closed-Loop Pulse System Transfer Function 

In the pulse closed-loop system unit diagram (fig. 3.17) the pulse ele-
ment can be located in any place, but there is a single approach for transfer 
function and output equation obtaining. 

 
Fig. 3.17. Unit diagram of the pulse closed-loop system 

 
The output function equation of the obtaining pulse system realized in 

the following form: 
 It’s considered, that the pulse element is a switch and the 
pulse ACS described for the case, when the switch is open-ended. 
 It’s considered, that discrete signal at the output of an open-
ended switch exists and is written in Z -transform. 
 Output ACS signal equation is written in Z -transform. 
 When excluding intervening variables in equations, the 
output system equation is written, when it’s possible its transfer 
function is also written. 

Let’s consider the introduced approach for some variants of the unit dia-
gram. 

The first case. Pulse element located after summer (fig. 3.17) 
Let’s write signal in the pulse element output in Z -transform: 

 * *( ) { ( )} ( ) { ( ) ( )}.RCP FBz Z g s z Z W s W s       (3.19) 

System output equation is written in Z-transform: 

 ( ) ( ) { ( )}.RCPy z z Z W s      (3.20) 

Let’s evaluate *( )z  from (3.19): 

     * *( ) { ( ) }RCP FBz z Z W s W s g z      . 

   
 

*
*

1 { ( ) }RCP FB

g z
z

Z W s W s
 

 
  

 (3.21) 

Substituting (3.21) in (3.20), obtain: 

    
    * *

1 ( )
RCP

RCP FB

Z W s
y z g z

Z W s W s
 

 
; 
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Let’s write system differential equation:  

    1 ( ) ( ) ( ) ( ) ( )RCP FB RCPZ W s W s y z Z W s g z       (3.22) 

Divide in (3.22) ( )y z  by ( )g z  obtain the closed-loop system pulse 
transfer function 

 
( )

( )
1 ( )

RCP
CLS

OLS

W z
W z

W z



.    (3.23) 

The second case (fig. 3.18). 

 
Fig. 3.18. System with pulse element in feedback loop 

 

Let's write the signal equation *( )y z  at the pulse element output when 
feedback loop is broken 

    * * *
1 1( ) ( ) ( ) ( ) ( ) ( )FBy z Z x s W s z W s W s y z     .  (3.24) 

Evaluating *( )y z  from the equation (3.24), obtain the system differen-

tial equation:    * *
1 11 ( ) ( ) ( ) ( ) ( )FBz W s W s y z Z x s W s        

The third case (fig. 3.19). 

 
Fig. 3.19. System with pulse element in the feedback loop 

 
Let’s write signal equation coming to pulse element, when the feedback 

loop is broken:  
    * * *

1 1( ) ( ) ( ) ( ) ( ) ( )FB OC OCy z Z x z W s Z W s W s y z     .  (3.25) 

Let’s evaluate * ( )FBy z  from this equation 

 
 

*
1*

1

( ) ( )
( ) ,

1 ( ) ( )FB
oc

Z x z W s
y z

Z W s W s




 
 

where 
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 *
1 1( ) ( ) ( ) ( ) ,FB OCW W x z z W s W s x s       

 1 1( ) ( ) ( )FB FBW W z z W s W s    . 

Output signal system in Z -image: 
 * * *

1 1( ) ( ) ( ) ( )FBy z W x z W z y z    .   (3.26) 

Substituting equation (3.25) into equation (3.26), obtain: 
* * *

* 1 1 1 1 1

1

( ) ( ) ( ) ( ) ( )
( ) .

1 ( )
FB FB

FB

W x z W W z W x z W W x z W z
y z

W W z

        


 
 

Example 3.4. Obtain pulse transfer function of DCM rotation frequency 
closed-loop ACS. 

Solution. 
Let’s use expression (3.23) and pulse transfer functions of continuous 

part and DCM rotation frequency open-loop ACS from the example 3.3:  
( )

( )
1 ( )

RCP
CLS

OLS

W z
W z

W z



; 

2

2

6.081 5.7693 0.3127
( )

0.164 0.00001947CP

z z
W z

z z

 


 
. 

2

2

0.4865 0.4615 0.025
( ) ( )

0.164 0.00001947OLS FB TG CP

z z
W z K K W z

z z

 
   

 
2

22

2 2

2

6.081 5.7693 0.3127
6.081 5.7693 0.31270.164 0.00001947( )

0.4865 0.4615 0.025 1.4865 0.6255 0.02498
1

0.164 0.00001947

CLS

z z
z zz zW z

z z z z
z z

 
   

   
 

. 

3.6 Stability Analysis of Pulse Closed-Loop Systems 

3.6.1 Pulse ACS stability estimation based on system characteristic equation 
roots 

Pulse closed-loop ACS transfer function has a form  
1

0 1
1

0 1

( ) ...
( )

( ) ...

e e
e e

CLS m m
m

B z b z b z b
W z

A z a z a z a






  
 

  
, 

and its characteristic equation 1
0 1( ) ... 0m m

mA z a z a z a     . 
On the basis of correlation between s and z-planes system stability con-

dition can be stated, having characteristic equation roots. 
Statement: For the pulse closed-loop system to be stable, it’s necessary 

and sufficient, that system characteristic equation roots were modulo smaller 
than one, i.e. 1iz  , if 1iz   – system is on the stability boundary, and if 

1iz   – system is unstable. 
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Example 3.4. Estimate DCM rotation frequency pulse ACS stability, us-
ing root method. 

Solution. 
Let’s use transfer function of DCM rotation frequency closed-loop ACS 

from the example 3.3. 
2

2

6.081 5.7693 0.3127 ( )
( )

1.4865 0.6255 0.02498 ( )CLS

z z B z
W z

z z A z

 
 

 
. 

Using Matlab , obtain 
> W=tf([6.081 -5.7693 -0.3127],[1.4865 -0.6255 -0.02498])  
Transfer function: 
 6.081 s^2 - 5.769 s - 0.3127 
------------------------------  
1.486 s^2 - 0.6255 s - 0.02498  
>> pole(W) 
ans = 0.4575; -0.0367 

Conclusion. Since characteristic equation modulo 1z , 2z  smaller then 1, DCM 

rotation frequency closed-loop ACS is stable. 

3.6.2 Mihailov criterion analogue application for pulse system stability es-
timation 

The physical sense of pulse and continuous systems frequency charac-
teristics is similar. Feature of these characteristics for the pulse systems is 
correlation between harmonic sequences (harmonic lattice function) between 
output and input signals of pulse filter with transfer function *( )W s  or ( )W z . 
Envelopes of lattice functions change according to harmonic law. 

If at linear pulse filter input harmonic sequence   sinx nT A x nT     

is fed, then after step response finishing harmonic sequence 
   siny nT A y nT       will be at the system otput. 

If the initial system information represented as a pulse transfer function 
*( )W s  or ( )W z , so for transition to frequency characteristics the argument 

substitution of s j  or j Tz e   are used. 
As the result of such substitution amplitude-phase-frequncy characteris-

tic (complex gain) of pulse system is obtained. 
 ( ) ( ).j TW j W e       (3.27) 

Let’s consider the transfer function of the following form 
1

1 0
1

1 0

... ( )
( ) .

... ( )

m m
m m

n n
n n

b z b z b B z
W z

a z a z a A z
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Let’s make a substitution z = еjωT, obtain amplitude-phase-frequency 
characteristic.  

 
( 1)

1 0
( 1)

1 0

...
( ) .

...

jm j m
j T m m

jn j n
n n

b e b e b
W e

a e a e a

 


 

  


  


  


  
   (3.28) 

Complex expression can be represented in form 
( )( ) ( ) ( ) ( ) ,jW j P jQ R e     

       

where ( )P  , ( )Q  , ( )R  , ( )   accordingly is real, imaginary, ampli-
tude and phase characteristics of pulse system. Apparently, 

2 2( ) ( ) ( )R P Q      , 
( )

( ) arctg
( )

Q
k

P

  





  , 0, 1, 2,k    , 

( ) ( )cos ( )P R      , ( ) ( )sin ( ).Q R       
For the fixed value of ω amplitude-phase-frequency characteristic repre-

sented as a vector on the plane  * *,P jQ . When changing ω the end of vector 

( )W j  plot some curve, which is called the amplitude-phase-frequency 
characteristic locus. 

Let’s mention the main frequency characteristic features of pulse sys-
tems, which result from the pulse transfer function properties. 

1. For frequency characteristics plotting, it’s sufficient to limit oneself to 

  changing in the range from 0 to 
T


. 

2. Amplitude-phase-frequency characteristics of pulse system finish on 

real axis, because for 
T

   complex gain (3.27) is always a real number. 

Among frequency criterions for pulse systems analysis the Nyquist and 
Mikhailov criterions analogues are used. Let’s consider the Mikhailov crite-
rion. 

For the stability estimation of pulse ACS characteristic equation of 

closed-loop system is used. Making substitution j Tz e  , obtain Mikhailov 
curve equation 

0 1 2

2( ) ( )* ( ) ... ( ) ( ),n
j T j T j T mD j a a e a e a e U jV            (3.29) 

Applying Euler formula j Te  =cos sinT j T  , write (3.29) 

0 1 2( ) (cos sin ) (cos2 sin 2 )

... (cos sin ).m

D j a a T j T a T j T

a mT j mT

    
 

     
  

 

When changing frequency   from 0 to 
0T


, the Mikhailov curve points on the 
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complex plain ( ), ( )U jV   (fig. 3.20) are defined. 

 

 
Fig. 3.20. Mikhailov curve locuses for stable system of 1st, 2nd , 3rd orders. 

 
For the close-loop pulse ACS to be stable, it’s necessary and sufficient 

that for  =0 Mikhailov curve takes the beginning in the positive part of the 

real axis and by increasing the frequency from 0 to 
0T


 characteristic curve 

*( )D j  sequentially, without vanish, in the positive (counterclockwise) di-
rection pass 2m  quadrants, where m  is the system order. 

Example 3.5. Estimate DCM rotation frequency pulse ACS stability, us-
ing the Mikhailov criterion analogue. 

Solution. 
Let’s use transfer function and characteristic equation of DCM rotation 

frequency closed-loop ACS from the example 3.4.  
2

2

6.081 5.7693 0.3127 ( )
( )

1.4865 0.6255 0.02498 ( )CLS

z z B z
W z

z z A z

 
 

 
. 

Using Mathсad, obtain the Mikhailov locus (fig. 3.21) 
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→∞

 
Fig. 3.21. Mikhailov locus 

 
The Mikhailov curve for 0   takes the beginning on the positive real 

axis (0,836) and finish on the real axis (2,087). Pass sequentially, without 
vanish, 2 4m   quadrants. Therefore, DCM rotation frequency pulse ACS is 
stable. 

3.7 Control Process Quality Estimation of Pulse ACS 

For the pulse ACS quality indexes estimation applied the same approach 
as in the linear systems, but it has its own specific. Pulse system output signal 

( )y t  is continuous, but, as far as, for the system analysis discrete Laplace 
transform and fictitious quantizer are used, it can be assumed that output sig-
nal *( )y t  is discrete or  y nT . Having the discrete signal and making its ap-

proximation, obtain the continuous output signal. Applying the pulse transfer 
function of closed-loop ACS it can be written:      CLSY z W z G z  . To ob-

tain  y nT  the Heaviside equation or Laurent series can be applied. The eas-

ier way for discrete signal obtaining is using program Control System 
Toolbox Matlab. Let’s consider this approach on the example. 

Example 3.6. Obtain transfer function and discrete signal of DCM rota-
tion frequency closed-loop ACS. Define system quality indexes.  

Solution. 
Let’s use system parameters and continuous part transfer function ex-

pression

1 1

0.02 sec; 0.5 sec; 0.1 sec; 0.7 sec; 15; 0.2;

10; 8.5; 0.16; 0.5.
E EM M G EA RD

G M TG FB

T T T T K K

K K K K
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1 1

4 3 2

2( )
( 1) ( 1) ( 1)

12.24
.

0.0007 0.043 0.41 1.3 1

EA M RD G M
CP

M G E EM EM

K К К К К
W s

T s T s T T s T s

s s s s



   
 

    


   

 

Discrete signal of DCM rotation frequency pulse ACS represented in 
fig. 3.22 and its quality indexes in fig. 3.23. 

>> Wn=tf([12.24],[0.0007 0.043 0.41 1.3 1]) 
 Transfer function: 
 12.24 
--------------------------------------------- 
0.0007 s^4 + 0.043 s^3 + 0.41 s^2 + 1.3 s + 1 

>> Wnd=c2d(Wn,0.9) – conversion  CPW s into pulse  CPW z with sampling pe-

riod 0.9 sec.T   

Transfer function: 
 5.031 z^3 + 2.607 z^2 + 0.04084 z + 1.89e-007 
---------------------------------------------------------- 
z^4 - 0.3768 z^3 + 0.00426 z^2 - 5.644e-005 z + 1.602e-022 
 Sampling time: 0.9 
>> Woc=tf([0.08],1) 
 Transfer function: 
0.08 
>> Wz=feedback(Wnd, Woc) – closed-loop pulse ACS transfer function obtaining 

WЗС(z) 
 Transfer function: 
 5.031 z^3 + 2.607 z^2 + 0.04084 z + 1.89e-007 
-------------------------------------------------------- 
z^4 + 0.02571 z^3 + 0.2129 z^2 + 0.003211 z + 1.512e-008 
 Sampling time: 0.9 
>> pole(Wz) 
ans = 
 -0.0053 + 0.4612i 
 -0.0053 - 0.4612i 
 -0.0151  
-0.0000  
>> step(Wz) 



69 

 

 
Fig. 3.22. Pulse ACS discrete signal 

 

 
Fig. 3.23. Pulse ACS quality indexes 

 
For the accuracy estimation of the pulse control systems in the steady-

state condition the value of steady-state error for different reference signals is 
used. 
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In closed-loop pulse system (fig. 3.10) error е, reference signal g and the 
disturbance f related to each other by the following equation regarding z-
image ( ) ( ) ( ) ( ) ( ).f

CLS CLSz W z G z W z F z    

This expression contains two components of error, the first  gE z  spec-

ified by reference signal, and the second  fE z  by disturbance. 

Steady-state error of pulse system can be calculated by the expression, 
which defines the finite value of original, i.e. 

 
1 1

1 1
( ) lim ( ) lim ( ).g f

z zn

z z
e nT E z E z

z z 

 
    (3.30) 

Let’s define steady-state error for the reference signal, assuming 
( ) 0f t  . 

 
1

1 1
( ) ( ) lim ( ) .

1 ( )g zn n OLS

z
e nT e nT G z

z W z 

 
    

  (3.31) 

If the constant signal 0( ) 1( )g t g t   fed at the system input, which z -

image 0( )
1

g z
G z

z



, then according to (3.30) position steady-state system er-

ror 

 0

1
( ) lim .

1 ( )zn OLS

g
e nT

W z



   (3.32) 

For the reference signal 1( )g t g t  , linearly dependent on time, Z -

image 1
2

( ) ,
( 1)

g Tz
G z

z



 and steady-state error, according to (3.30), defined by 

the following expression 

 1

1
( ) lim .

( 1)(1 ( ))zn OLS

g T
e nT

z W z


 
   (3.33) 

And called speed system error. 
If the input signal changes with the constant acceleration, i.e. 

2
2( ) 2g t g t , then Z -image has the form 

2
2

3

( 1)
( )

2( 1)

T g z z
G z

z





. 

Steady-state error 

 
2

2
21

( ) lim ,
2( 1) (1 ( ))zn OLS

g T
e nT

z W z


 
   (3.34) 

and that is called the acceleration system error. 
For the given errors definition, one can use the error series 

' '' ( )2
0 1( ) ( ) ( ) ( ) ... ( ) ...

2! !
mmC C

e nT C g nT C g nT g nT g nT
m

       (3.35) 
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where  , , , mg g g   are derivatives of ( )g t in the time moments T ; 

0 ( ) 1/CLSC W z z  ; 
1

1

( )
1/CLSW z

С z
z


 


; 

( )
1

!
/

m
m CLS

m

C W z
z

m z


 


; 

1
( )

1 ( )CLS
OLS

W z
W z

 


. 

Example 3.7. Define the control error of DCM rotation frequency pulse ACS for 
input 0 1( )inU U t  , 0 5U V . 

Solution. 

Let’s use the expression (3.32) 0

1
( ) lim

1 ( )zn OLS

g
e nT

W z



 and, using Control Sys-

tem Toolbox Matlab obtain ( )OLSW z . 

Wn=tf([12.24],[0.0007 0.043 0.41 1.3 1]) 
 Transfer function: 
 12.24 
--------------------------------------------- 
0.0007 s^4 + 0.043 s^3 + 0.41 s^2 + 1.3 s + 1 
>> Woc=tf([0.08],1) 
 Transfer function: 
0.08 
>> Wpc=Wn*Woc 
 Transfer function: 
 0.9792 
--------------------------------------------- 
0.0007 s^4 + 0.043 s^3 + 0.41 s^2 + 1.3 s + 1 
>> Wpcd=c2d(Wpc,0.9) 
 Transfer function: 
 0.4025 z^3 + 0.2086 z^2 + 0.003267 z + 1.512e-008 
---------------------------------------------------------- 
z^4 - 0.3768 z^3 + 0.00426 z^2 - 5.644e-005 z + 1.602e-022 
Sampling time: 0.9 

4 3 2 -5 -22

4 3 21

5(z  - 0.3768 z  + 0.00426 z  - 5.644 10  z + 1.602 10 )
( ) lim

z  - 0.0257 z  + 0.21286 z  - 0.0033 z 
3.137

2.65.
1.1839

zn
e nT
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4 CONTROL TASKS AND STUDY GUIDE 

4.1 General Study Guide 

 In the course paper (part 1) linear stationary ACS is a subject of study. In the pro-
ject (part 2) nonlinear pulse ACS is investigated. 

Initial data for the ACS study is given as a system circuit schematic, its parameters 
numerical values table and list of questions are to be considered. 

When linear ACS stability region plotting, take gain constant of amplifying ele-
ment as varying parameter A.  

Matlab or Mathcad programs are acceptable to use during the project carrying out. 
Nonlinear static characteristic types of nonlinear element, electronic amplifier, 

magnetic amplifier and thyristor converter. 

 
а)      b) 

Fig. 4.1. Nonlinear element static characteristics: а) EA, b) МA and ТT. 
 
Static characteristic parameter values assume equaled «b»=4 for thyristor convert-

er, «b»=0.5 – for magnetic amplifier; «b»=1 – for electronic amplifier; parameter 
«m»=0.1; value «c» defined from gain constant of the given amplification element. 

If there will be no periodical solutions, when carrying out paragraph 4, 
then it is necessary to substitute amplification element coefficient or nonline-
ar element parameters. 

To form pulse system scheme is necessary: 
 use the unit diagram of closed-loop system for the reference signal; 
 in the given scheme, place the ideal pulse element with the pulse 
former after the  summer; 

4.2 Guide Lines for Project Text Document Content 

The project must be drawn on the format sheets A4 and contain: 
 cover page; 
 project content; 
 project task; 
 ACS unit diagram;  
 open-loop and closed-loop ACS transfer functions; 
 estimation results of system stability in Matlab or Matсad; 
 step response calculation results according to system unit diagram in 
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Matlab; 
 conclusion about system analysis quality; 
 references. 

4.3 Guide Lines for Project Graphic Material Appearance 

Requirements for project graphic material: 
 functional and structural schemes must be drawn according to the 
required format; 
 signal motion direction and their title must be drawn in structural 
schemes; 
 diagrams must be represented with dimensional axis and obligatory 
with grid lines. 

Conclusion 

In the book authors made an attempt to represent all the basic approaches to analy-
sis and design of linear, nonlinear and pulse systems. In order to make an explanation 
more clear, a lot of different examples were attached. Theoretical part contains methods 
that allow solving main problems of control theory as identification procedure, system 
stability analysis and controller design.  

Actually, book contains three parts, the first one is devoted to linear systems ques-
tions study; the second part is more complicated and consequently more interesting; in the 
third part approaches to pulse systems research are considered. 

The main particularity of this book is to acquire practical knowledge in control the-
ory, so it is focused on course work realization. In order to understand the biggest part of 
control system design procedure and to make clear corresponding between control theory 
methods and real systems the tasks for course paper begin with principle scheme of sys-
tems.  

The results of control theory application are everywere around us, it makes this 
course important and very interesting. 
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Scheme №1. SYNCHRONOUS GENERATOR VOLTAGE ACS 
 

 
Fig. 0.1. Circuit schematic 

 
Table 1 

Parameters ACS parameters values according to variants  

  1 2 3 4 5 6 7 8 9 0 

1I
K  V rad 20 8 10 7,2 12,5 6,5 9,8 5,6 6,4 12 

2IK   0,2 0,08 0,1 0,07 0,12 0,1 0,13 0,1 0,15 0,08 

IT  s  0,025 0,018 0,014 0,028 0,018 0,022 0,02 0,016 0,03 0,021 

1AK   4,6 8,25 12,3 11,3 8,7 18,9 12,2 20 9,1 23,7 

2AK   1 1 1 1 1 1 1 1 1 1 

TCK   11,8 12,8 8,1 8,8 9,08 14,2 11,5 8,3 9 4,6 

TCT  s  0 0 0 0 0 0 0 0 0 0 

1GK   1,05 1,09 1,2 1,12 1,15 1,07 1,11 1,08 1,18 1,1 

2GK  V A  0 0 0 0 0 0 0 0 0 0 

GT  s  0,0425 0,127 0,087 0,079 0,12 0,07 0,78 0,066 0,1 0,042 

1SGK   2,2 3,6 3,5 3,45 3,4 2,1 2,05 2,12 2,08 3,3 

2SGK  V A  16 23 22 15 18 20 17 14 13 24 

SGT  s  0,55 0,27 0,42 0,37 0,34 0,45 0,3 0,28 0,385 0,6 

T  s  0,1 0,085 0,079 0,112 0,089 0,071 0,085 0,076 0,126 0,13 

VI  A  0,5 1 1,5 0,75 0,8 1,75 2 2,5 2,25 2,75 
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Scheme №2. ARTERIAL PREASSURE ACS BY THE EXTRA CORPORE-
AL CIRCULATION 

 
Fig. 0.2.Circuit schematic 

 
Table 2 

Parameters ACS parameters values according to variants  

  1 2 3 4 5 6 7 8 9 0 

1AK   35,7 36,3 19,8 24,7 24,3 14,8 10 27,7 14,7 21,1 

2AK   35,7 36,3 19,8 24,7 24,3 14,8 10, 27,7 14,7 21,1 

T  s  0,25 0,28 0,36 0,27 0,29 0,42 0,32 0,45 0,33 0,4 

  0,15 0,11 0,147 0,16 0,103 0,133 0,172 0,1 0,08 0,105

MAK   24 28 22 19,8 27,6 18,2 15 16,2 15,2 14,8 

MAT  s  0 0 0 0 0 0 0 0 0 0 

1MK  rad V s  17,2 14,6 16,8 21 17,5 24 18,8 15,6 20 18 

2MK  rad N m s  0 0 0 0 0 0 0 0 0 0 

ET   0 0 0 0 0 0 0 0 0 0 

EMT   0,5 0,63 0,56 0,48 0,59 0,91 0,52 0,83 0,76 0,7 

aK  mm Hg V  0,65 0,5 0,56 0,54 0,4 0,6 0,5 0,4 0,7 0,7 

bK   0,2 0,35 0,36 0,25 0,6 0,48 0,42 0,51 0,4 0,25 

aT  s  8,3 14 15 5,8 8,9 14 7,4 17,8 12 11 

bT  s  25 35 44 23 50 40 19 34 32 42 

PSK  V mm Hg  0,4 0,35 0,42 0,36 0,25 0,32 0,45 0,28 0,33 0,3 

K   115 100 91 80 72,5 63 46 40 33 31 

Lf   10 15 20 22 18 25 24 12 14 17 
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Scheme № 3. ELECTRONIC FURNACE TEMPERATURE ACS 

 
Fig. 0.3.Circuit schematic 

 
Table3 

Parameters ACS parameters values according to variants  

  1 2 3 4 5 6 7 8 9 0 

1AK   4,3 4 5 4 2 1 6,2 5,2 4 2 

2AK   4,3 6,5 8,8 2,4 2 2,6 4 8,6 2,2 2 

3AK   4,3 6,5 4,4 2,4 2 2,6 4 4,3 2,2 2,16

TCK   6,5 8 14,2 9,6 5,1 6,4 8 4,2 7,5 6 

TCT  s  0 0 0 0 0 0 0 0 0 0 

HK  deg V  5 4,8 6,4 5,6 4,4 3,8 6,4 2,4 6 4 

HT  s  250 140 220 180 120 160 170 275 320 87 

PK   0,9 0,8 0,94 0,88 0,96 0,7 0,85 0,92 0,76 0,65

PT  s  790 400 690 660 420 580 440 760 910 600

1TSK  V rad  0,5 0,2 0,1 0,8 1,2 0,75 0,4 0,5 1,05 0,8 

1TST  s  2,35 2,15 2,3 3,6 2,2 5,6 2,3 5,9 3,4 3,8 

2TSK  V rad  0,5 0,4 1 3,2 2 0,75 1 1,8 2,4 2 

2TST  s  28,1 12,2 8,3 7,2 14 21,5 7,7 28,6 16, 10 

K   63 40 75 90 52 33 70 40 80 25 

Lf  deg  18 20 25 26 28 30 31 24 29 19 
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Scheme № 4. DIRECT CURRENT MOTOR ROTATION FREQUENCY ACS 

 
Fig.0.4.Circuit schematic 

 
Table 4 

Parameters ACS parameters values according to variants  

  1 2 3 4 5 6 7 8 9 0 

1AK   10 9,8 6,5 5 5,6 12,5 7,8 10,6 6,9 5,6 

2AK   10 9,8 6,5 5 5,6 12,5 7,8 10,6 6,9 5,6 

1T  s  TCT  TCT  TCT TCT TCT TCT TCT  TCT  TCT  TCT  

2T  s  0,126 0,044 0,063 0,109 0,085 0,08 0,071 0,068 0,095 0,056

3T  s  0,016 0,0063 0,01 0,02 0,015 0,008 0,0085 0,012 0,01 0,0085

4T  s  0,126 0,044 0,063 0,109 0,085 0,08 0,071 0,68 0,095 0,056

TCK   13,8 13,8 12,7 11,5 13,8 13,2 12,5 13,8 12,7 13,8 

TCT   Т1 Т1 Т1 Т1 Т1 Т1 Т1 Т1 Т1 Т1 

1MK  rad V s  2,85 0,95 1,43 1,9 2,4 0,96 1,43 2,85 1,9 2,4 

2MK  rad N m s  4,6 8,4 6,4 2,8 3,6 4,2 2 5,6 3,2 4 

ET  s  0,021 0,009 0,013 0,012 0,011 0,013 0,011 0,009 0,013 0,01 

EMT  s  0,522 0,233 0,264 0,448 0,391 0,368 0,327 0,456 0,413 0,366

PK   0,2 0,4 0,35 0,25 0,6 0,4 0,45 0,2 0,34 0,25 

TGK  V s rad  0,13 0,2 0,2 0,4 0,1 0,2 0,2 0,22 0,2 0,3 

K   81,16 233,6 131,2 100,2 130,9 158, 4 176,7 270 119,2 248,4

LM  N m  46 84 64 28 36 42 20 56 32 40 
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Scheme №5. SERVO SYSTEM 

 
Fig. 0.5.Circuit schematic 

 
Table 5 
Parameters ACS parameters values according to variants  

  1 2 3 4 5 6 7 8 9 0 

AMSK  V rad  30 25 27,6 32 18 15 20 29,6 28,6 33 

1AK   25 20 19 22 50 22,5 23 15 14 12,5

2AK   25 20 19 22 50 22,5 23 15 14 12,5

1T  s  0,28 0,174 0,166 0,126 0,063 0,112 0,056 0,19 0,2 0,158

2T  s  0,08 0,105 0,112 0,091 0,051 0,083 0,038 0,05 0,1 0,102

3T  s  0,8 0,7 0,477 0,546 0,268 0,387 0,164 0,594 0,87 0,403

4T  s  0,028 0,026 0,039 0,021 0,012 0,024 0,013 0,016 0,023 0,04

EAK   20 21 18 24 18,5 30 16 27 22 17 

1MK  rad V s  0,95 1,43 1,9 1,5 0,98 1,44 1,95 1,9 1,45 0,95

2MK  rad N m s   5,2 0,65 15 8,6 36 0,8 24 17,2 7,8 40 

ET  s  0 0 0 0 0 0 0 0 0 0 

EMT  s  0,25 0,33 0,398 0,295 0,166 0,224 0,107 0,135 0,141 0,27

1RK   - - - - - - - - - - 

2RK   0,01 0,008 0,008 0,009 0,007 0,011 0,009 0,0088 0,01 0,012

LM  N m  5 0,5 15 8 4 0,8 2 3 4 5 



79 

 

Scheme №6.HEAT EXCHANGER TEMPERATURE ACS 

 
Fig. 0.6. Circuit schematic 

Table 6 
Parameters ACS parameters values according to variants  

  1 2 3 4 5 6 7 8 9 0 

1I
K  V rad  12 15 12,5 14 12 10 15 10 12,5 14 

2IK  degV  2,1 1,8 1,7 1,9 2,2 2,1 2,4 2, 2,3 2,6 

IT  s  0 0 0 0 0 0 0 0 0 0 

1AK   1 1 1 1 1 1 1 1 1 1 

2AK   1 1 1 1 1 1 1 1 1 1 

EAK   10,2 18,7 8,5 17,5 10 12,5 12 12 11,1 10,9

1MK  rad V s  1,4 1,1 1,24 0,95 1,4 1,15 1 0,94 1,05 0,9 

2MK  rad N m s  0 0 0 0 0 0 0 0 0 0 

EAT  s  0 0 0 0 0 0 0 0 0 0 

EMT  s  0 0 0 0 0 0 0 0 0 0 

RK   0,011 0,01 0,013 0,008 0,012 0,01 0,011 0,014 0,015 0125

PK  V rad  8 12 15 8,5 9 7,5 8,2 11 9,1 10 

FBT  s  4,5 1,78 2,2 2,6 4 4,8 4,26 3,9 3,23 5,4 

1HEK  deg rad  127 183 172 156 95,6 171 118 178 153 150

2HEK  degrad  1 1 1 1 1 1 1 1 1 1 

1HET  s  65 30 24 55 50 125 100 90 85 110

2HET  s  1,25 0,5 0,63 0,91 1,07 1,6 1,4 1,17 1 1,38

Lf  deg  20 25 24 28 30 25 26 31 32 23 
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Scheme №7. STEAM TEMPERATURE ACS 

 
 

Fig. 0.7. Circuit schematic 
Table7 

Parameters ACS parameters values according to variants  

  1 2 3 4 5 6 7 8 9 0 

1I
K  V rad  14 12 10 15 12 20 14 15 10 11

2IK  degV  0,5 0,2 0,4 0,24 0,21 0,15 0,12 0,25 0,4 0,3

IT  s  0 1 1,6 0 1,4 1 0 1,25 1,7 0 

1K   0,4 0,25 0,2 0,18 0,1 0,2 0,15 0,12 0,16 0,2

1T  s  2,2 2,3 2,3 2,85 2 1,52 0,63 1,66 1,84 2 

2 E FT T T  s  0 0 0 0 0 0 0 0 0 0 

TCK   6,4 10,2 13,7 9,8 12 14,5 18 16,6 14 10

1MK  rad V s  11 5 4 3,2 4,8 9,6 9,6 5,6 4,8 3,2

2MK  rad N m s  0 0 0 0 0 0 0 0 0 0 

EMT  s  0,5 0 0,42 0,55 0 0,32 0,35 0 0,32 0,25

RK  V rad  0,028 0,07 0,05 0,09 0,06 0,04 0,12 0,08 0,075 0,04

GK  deg rad  40 85 120 52 180 152 100 90 65 230

BT  s  1,3 0,35 0 1,8 0,4 0 1,2 1 0 1,5

PK   0,8 0,9 0,95 1 0,6 0,75 0,62 0,5 0,55 0,4

PT  s  630 950 2500 1150 1260 790 690 2000 1380 660

Lf  deg  30 22 34 31 35 40 42 45 50 55
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Scheme№8.DIRECT CURRENT MOTOR ROTATION FREQUENCE ACS 
 

Fig. 
0.8. Circuit schematic 

Table8 
Parameters ACS parameters values according to variants  

  1 2 3 4 5 6 7 8 9 0 

1AK   4 4,2 3,5 10 4,2 1 8,5 6 3 1 

2AK   6 16,3 22,3 41,7 39,5 4,5 28,8 17,5 10,65 2,84

3AK   0,035 0,27 0,026 0,36 0,092 0,11 1 1 0,101 0,1 

1T  s  0,083 0,063 0,093 0,054 0,112 0,08 0,068 0,072 0,1 0,04

2T  s  0,05 0,044 0,04 0,064 0,1 0,012 0,08 0,12 0,06 0,01

TCK   8, 6 9 5 6,4 10,2 7,5 12,5 9,6 8,2 6,6 

TCT  s  0 0 0 0 0 0 0 0 0 0 

1MK  rad V s  1,4 2,4 1,9 1,43 0,96 1,8 2,4 0,95 2,85 1,9 

2MK  rad N m s  6,4 26 2,8 24 8 10 3,6 5,6 21 36 

ET  s  0,012 0,018 0,016 0,01 0,015 0,018 0,05 0,022 0,035 0,011

EMT  s  0,297 0,497 0,382 0,482 0,42 0,247 0,155 0,575 0,58 0,247

FBR    0,8 1,65 0,3 1 1,2 2,4 2,1 1,9 1,5 1,2 

VSK  V s rad  0,1 0,08 0,12 0,2 0,08 0,13 0,2 0,16 0,15 0,1 

VST  s  0,022 0,01 0,027 0,015 0,025 0,01 0,011 0,012 0,014 0,013

PK   0,4 0,25 0,1 0,2 0,2 0,15 0,016 0,3 0,12 0,25

CSK    0,12 0,1 0,05 0,08 0,17 0,11 0,25 0,11 0,2 0,085

LM  N m  6 10 3 12 8 10 4 5 2 4 
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Scheme №9. SERVOSYSTEM WITH COMBINED CONTROL 

 
Fig. 0.9. Circuit schematic 

Table9 
Parameters ACS parameters values according to variants  

  1 2 3 4 5 6 7 8 9 0 

AMSK  V rad  16 18 20 28 21 15 24 20 30 25,2

AMSK  V rad  16 18 20 28 21 15 24 20 30 25,2

1AK   0,216 0,202 0,192 0,03 0,154 0,04 0,3 0,12 0, 2 0,2

2AK   0,65 0,88 0,78 2,85 1,34 3,42 0,68 1,22 0,93 1,09

3AK   0,65 0,88 0,78 2,85 1,34 3,42 0,68 1,22 0,93 1,09

TCK   12,8 11,2 18,6 14,8 12,8 20 13,6 16,2 10 15,2

TCT   0,02 0,03 0,01 0,04 0,02 0,008 0,012 0,015 0,01 0,03

1MK  rad V s  14,1 8,2 6,2 2,2 8,7 2,6 15,6 5,6 12,3 4,8

2MK  rad N m s  2,6 1,5 8,7 7,8 2,4 10 12 7,2 4,5 6,5

ET  s  0,03 0,02 0,03 0,01 0,01 0,015 0,008 0,02 0,018 0,01

EMT  s  0,15 0,12 0,09 0,2 0,24 0,18 0,14 0,21 0,12 0,15

1RK   20 10 12 14 10 15 13,55 11,8 17,6 20,4

2RK   0,008 0,011 0,01 0,006 0,008 0,012 0,01 0,009 0,007 0,01

TGK  V s rad  0,5 0,1 0,2 0,08 0,11 0,2 0,18 0,15 0,11 0,1

  0,15 0,2 0,4 0,172 0,19 0,19 0,345 0,26 0,45 0,56

T  s  0,03 0,0375 0,067 0,05 0,061 0,044 0,08 0,079 0,106 0,23

LM  N m  2 2 6 5 2 8 6 4 3 2 
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Scheme№10. HERMETIC CHAMBER TEMPERATURE ACS 

 
Fig. 0.10. Circuit schematic 

Table 10 
Parameters ACS parameters values according to variants  

  1 2 3 4 5 6 7 8 9 0 

1I
K  degV  21 15 8 16 12 10 12 15 20 18 

2IK  degV  0,4 0,16 0,25 0,1 0,2 0,12 0,15 0,1 0,22 0,24

IT  s  0 1,6 0 6,3 0 2,5 0 8 0 4 

1AK   2 0,64 4 1,82 3 1,35 3,5 0,47 2 4,5 

2AK   1 2 0,5 0,4 1 0,25 0,8 0,4 1,2 1 

MAK   2,4 4,5 3 2 87 3,5 6,4 2,2 5,6 1,8 

MA ET T  s  0 0 0 0 0 0 0 0 0 0 

1MK  rad V s 1,3 1,15 1,2 1,04 1,12 1 0,93 0,95 1,05 0,83

2MK  
rad N m s 

 0 0 0 0 0 0 0 0 0 0 

EMT  s  0,54 0 0,255 0 0,23 0 0,38 0 0,2 0 

RK   0,02 0,081 0,074 0,002 0,03 0,003 0,006 0,01 0,038 0,002

CEK  deg rad 25 15 27,5 18 35 16 18 22 30 26 

CK   0,744 0,853 0,667 0,886 0,338 0,789 0,65 0,717 0,782 0,823

CT  s  60 15 90 30 60 25 40 20 20 100

CEK  s  22 63 40 90 35 60 100 115 80 25 

AMSK  V rad  3,6 2,5 5 2,4 2 2 4,2 0,5 2,8 4 

Lf  deg  8 6 12 15 9 10 14 18 21 16 
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Scheme №11. SERVO SYSTEM 

 
Fig. 0.11. Circuit schematic 

Table 11 
Parameters ACS parameters values according to variants  

  1 2 3 4 5 6 7 8 9 0 

AMSK V rad  12 15 16 12,5 10 13,5 14 9 15 14,5

AMSK V rad  12 15 16 12,5 10 13,5 14 9 15 14,5

1AK   22,4 17,3 25 20,2 18 17,5 15,3 11,5 27,2 16 

2AK   22,4 17,3 25 20,2 18 17,5 15,3 11,5 27,2 16 

3AK   1 1 1 1 1 1 1 1 1 1 

TCK   18,2 15 17 16,8 13,7 16,6 16 18,7 14, 10,4

TCT   0,01 0 0,008 0 0,012 0 0,006 0 0,011 0 

1MK  rad V s  1,43 2,1 1,84 2 2,85 1,43 1,95 1,5 1 1,95

2MK  rad N m s  21 36,5 40 32 20 27 18 24 26 42 

ET  s  0 0,015 0 0,02 0 0,016 0 0,022 0 0,018

EMT  s  0,162 0,307 0,13 0,272 0,191 0,355 0,158 0,189 0,2 0,256

1T  s  0,04 0,05 0,03 0,055 0,075 0,085 0,06 0,1 0,08 0,1 

2T  s  0,1 0,08 0,07 0,107 0,115 0,112 0,085 0,155 0,125 0,126

TGK  V s rad  0,25 0,16 0,2 0,27 0,13 0,15 0,18 0,12 0,15 0,2 

RK   0,01 0,011 0,008 0,01 0,009 0,008 0,012 0,011 0,007 0,012

LM  N m  2 4 3 2 2 3 2 4 3 4 
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Scheme №12.SERVO SYSTEM 

 
Fig. 0.12. Circuit schematic 

Table 12 
Parameters ACS parameters values according to variants  

  1 2 3 4 5 6 7 8 9 0 

AMSK  V rad  30 25 27,6 32 18 15 20 29,6 28,6 33 

1AK   25 20 19 22 50 22,5 23 15 14 12,5

2AK   25 20 19 22 50 22,5 23 15 14 12,5

1T  s  0,28 0,174 0,166 0,126 0,063 0,112 0,056 0,19 0,2 0,158

2T  s  0,08 0,105 0,112 0,091 0,051 0,083 0,038 0,05 0,1 0,102

3T  s  0,8 0,7 0,477 0,546 0,268 0,387 0,164 0,594 0,87 0,403

4T  s  0,028 0,026 0,039 0,021 0,012 0,024 0,013 0,016 0,023 0,04

EAK   20 21 18 24 18,5 30 16 27 22 17 

1MK  rad V s  0,95 1,43 1,9 1,5 0,98 1,44 1,95 1,9 1,45 0,95

2MK  rad N m s  5,2 0,65 15 8,6 36 0,8 24 17,2 7,8 40 

ET  s  0 0 0 0 0 0 0 0 0 0 

EMT  s  0,25 0,33 0,398 0,295 0,166 0,224 0,107 0,135 0,141 0,27

1RK   - - - - - - - - - - 

2RK   0,01 0,008 0,008 0,009 0,007 0,011 0,009 0,0088 0,01 0,012

LM  N m  5 0,5 15 8 4 0,8 2 3 4 5 
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Scheme №13. DIRECT CURRENT MOTOR ROTATION FREQUENCY COM-
BINED ACS 

 
Fig. 0.13. Circuit schematic 

Table 13 
Parameters ACS parameters values according to variants  

  1 2 3 4 5 6 7 8 9 0 

1AK   5 7,5 6,4 10 8 7,2 5,6 6 5,5 8,8 

2AK   23,33 15,25 5,6 6,25 20 20 12 15 8 12 

3AK   20 8 15 6,25 25 20 15 15 20 20 

TCK   18,75 12,5 12,5 15 20 12,5 15 19 16 25 

TCT  s  0,06 0,02 0,03 0,02 0,01 0,01 0,015 0,005 0,006 0,008

1MK  rad V s  1,6 2,8 2 3,2 2,4 3,2 2,4 3 2,5 1,8 

2MK  rad N m s  14 32 5,6 15 24 8 13,86 17,1 9,6 21,6

ET  s  0,02 0,1 0,08 0,15 0,12 0,1 0,14 0,11 0,08 0,05

EMT  s  0,3 0,4 0,5 0,35 0,4 0,32 0,45 0,3 0,4 0,36

VSK  V s rad  0,02 0,05 0,04 0,04 0,015 0,025 0,03 0,035 0,04 0,03

VSK  s  0,01 0,005 0,006 0,005 0,008 0,003 0,01 0,002 0,003 0,002

MCK  V N m  0,02 0,06 0,04 0,05 0,025 0,01 0,035 0,02 0,03 0,04

LM  N m  10 3 6 2 4 8 13 15 9 12 
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Scheme №14. TURBOJET ENGINE ROTATION FREQUENCY ACS 

 
Fig. 0.14. Circuit schematic 

Table 14 
Parameters ACS parameters values according to variants  

  1 2 3 4 5 6 7 8 9 0 

1MAK   8 5,4 5,5 5 5 4 7,2 8,5 7,5 4,7 

2MAK   8 5,4 5,5 5 5 4 7,2 8,5 7,5 4,7 

MAT  s  0 0 0 0 0 0 0 0 0 0 

1MK  2rad V s  2,4 1,8 2,1 4,5 8,6 4,25 6,4 8,6 8, 4 

2MK  rad N m s   0 0 0 0 0 0 0 0 0 0 

ET  s  0 0 0 0 0 0 0 0 0 0 

EMT  s  0,11 0,07 0,126 0,06 0,055 0,085 0,05 0,046 0,058 0,09

RK  mm/rad 4,8 5,2 3,9 4 3,2 5 3,6 4 4,4 3 

1TK  rad mm s  
 

48 55 40 36 50 32 45 54 42 60 

2TK   1 1 1 1 1 1 1 1 1 1 

TET  s  6 4 5,5 3,5 6,3 4,3 1,75 2,9 3,2 5 

VSK  V s rad  0,1 0,15 0,12 0,08 0,08 0,07 0,05 0,04 0,05 0,06

VST  s  0 0 0 0 0 0 0 0 0 0 

  0,024 0,06 0,065 0,12 0,06 0,084 0,115 0,1 0,09 0,11

T  s  0,022 0,027 0,036 0,03 0,023 0,042 0,024 0,017 0,022 0,032

Lf  Rad s  2 4 3 5 6 7 8 11 10 12 
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Appendix 1 

Device scheme Device equation 
Biological control object (BCO) 

with the arterial pump (AP) 
( 1)( 1) ( )

( ) ( 1) ( ),
a b

a b b a

T p T p P t

K K t K T p f t
   

    
 

P – preasure in BCO; 
 – AP rotation frequency; 
f – disturbance; 

,a bK K – gain; 
,a bT T – time constant. 

Direct current generator with sepa-
rate excitation (G) 

 1 2

( 1) ( )

( ) ( 1) ( ),
G G

G FC G G L

T p U t

K U t K T p R t

  

    
 

GU – output voltage of G; 

FCU – voltage on field coil; 

LR – load resistance; 

1 2
,G GK K – gain of G; 

GT – time constant of G. 

Synchronous generator (SG) 
 

1 1

( 1) ( )

( ) ( 1) ( ),
SG G

SG В SG SG

T p U t

K U t K T p I t

  

    
 

ГU  – output voltage of SG; 

FCU – voltage on field coil; 

1 2
,SG SGK K – gain of SG; 

SGT  – time constant of SG; 
I  – load current. 
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Direct current motor with separate 
excitation  

 

 
 

1 2

2( 1) ( )

( ) ( 1) ( )
E EМ EM

M AV M E L

T T p T p t

K U t K T p t




   
      

or 

1 2

2( 1) ( )

( ) ( 1) ( ),
E EM EM

M AV M E RM

T T p T p p t

K U t K T p M t

   
      

 – rotation frequency of output shaft; 
 – rotation angle of output shaft; 

AVU – armature voltage; 

LM – resisting moment on shaft; 

1 2
,M MK K – voltage and moment shaft; 

,E EМT T – electromagnetic and electromechani-
cal time conctants. 

Furnace with burner 

 
 

( 1)( 1) ( )

( ) ( 1) ( ),
B F

B F F B

T p T p t

K K t K T p f t




   
    

 

 – temperature in furnace; 
 – rotation angle of  furnace control element; 
f – disturbance; 

,B FK K – gain; 
,B FT T – time constants. 
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Heat exchanger 
 

 
 

1 2

1 1 2

( 1)( 1) ( )

( ) ( ),

HE HE

HE HE HE

T p T p t

K t K K f t





   

   
 

 – temperature in heat exchanger; 
 – rotation angle of control element; 
f – disturbance; 

1 2,T TK K – gain; 

1 2,T TT T – time constants.
 

Hermetic cabin 
 

1-heater, 2-cooler, 3-pump 

0( 1)( 1) ( )

( 1) ( ) ( 1) ( ),

k p

po p p

T p T p K t

K T p t T p f t

      
       
  – temperature in cabin,

   – rotation angle of control element, 
,CE CK K – gain of control element and cabin, 

,CE CT T  – time constants of control element 
and cabin. 
 

Electric furnace (EF) 
 

HE – heating element 

 

( 1)( 1) ( )

( ) ( ),
I P

I P P

T p T p t

K K U t K f t

   
   

 

 – temperature in electric furnace; 
U – voltage on HE; 
f – disturbance; 

,I PK K – gains; 
,I PT T – time constants. 
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Turbojet engine 

 

1 2
( 1) ( ) ( ) ( ),TE TE TET p t K h t K f t       

 – output shift rotation frequency, 
h –control element position, 
f –disturbance, 

1 2
,TE TEK K  – gains,  

TET  – time constants. 

Error angle measurement unit on 
selsyns 

 

( ) ( ( ) ( ));SU t K t t     
 – sensor rotation angle, 
 – detector rotation angle, 
U– voltage on measurement unit output, 

SK – sensor gain.
 

Error angle measurement unit on 
rotary transformer 

 

 

( ) ( ( ) ( ));SU t K t t     
 – sensor rotation angle, 
 – detector rotation angle, 
U– voltage on measurement unit output, 

SK – sensor gain. 

Reducer 
 

 
 

2 1( ) ( ),Rt K t     
1 – input shift rotation angle; 

2 – output shift rotation angle; 

рK – reducer gain. 

Temperatur sensor 
 

 
 

1 1
( 1) ( ) ( ),T TT p U t K t     

 – measurement object temperatur; 
U – sensor output voltage; 

1ТK – sensor gain; 

1ТT – sensor time constant. 
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Preassure tensometric sensor 
 

( ) ( ),PSU t K P t    
U – sensor outoput voltage; 
P – measurement object preassure; 

PSK – sensor gain. 

Elastic feedback element 
 

 

     
2 2 2

1 ,TS TS TST p U t K T p t     

  – measurement object temparatur; 
 – element output voltage; 

2TSK  – element gain; 

2TST  – element time constant. 

Elastic feedback element 
 

     1 ,FB P FBT p U t K T p t     

 t  - rotation angle of potentiometer motor, 

U  – element output voltage; 

PK  – element gain; 

FBT  – element time constant. 

Electronic amplifier (EA) 
 

 
 

   2 1 ,EAU t K U t    

2U – EA output voltage; 

1U – EA input voltage; 

EAK  –EA gain. 
 

Magnetic amplifier (MA) 
 

 
 

     2 11 ,MA MAT p U t K U t     

2U – MA output voltage; 

1U  – MA input voltage; 

MAK – MA gain; 

MAT – MA time constant. 
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Demultiplier 
 

       2 21 ,P PT p U t T U t      

where 
 1 2 1 2 ,T R R C R R   

 2 1 2 .R R R    

 

Correcting circuit 
 

 

         3 4 2 1 2 11 1 1 1 ,T p T p U t T T U t      

 
where 

1 1 ;T R C  

2 2 ;T R C  

3 4 1 2 1 2;T T R R C C  

 3 4 1 2 2 1 .T T R C R R     

 

Comparing-summarizing unit (CSU)
 

     
   

1 2

3 4

1 2

3 4 ,

OUT A A

A A

U t K U t K U t

K U t K U t

     

   
 

where 
 

1 1;A FBK R R  

2 2;A FBK R R  

3 3;A FBK R R  

4 4;A FBK R R  
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Unipolar angular motion sensor 

 

 

 ,ASU K t    

  – rotation angle of potentiometer motor 
(measured value); 
U – sensor output voltage; 

ASK  – sensor gain. 

Moment clutch 
 

 
 

   ,MC LU t K M t    

LM  – measured moment; 
U  – voltage on MC output, 

MCK  – MC gain. 

Measurement unit 

 
 

     
 

1

2

1 1

,

G OUT G G

G OUT

T p U K T p G t

K U t

     

 
 

G  – motor rheostat position (reference signal); 

GU  – measured voltage; 

OUTU  – output voltage; 

1GK  – reference signal gain; 

2GK  – measured signal gain; 

GT  – device time constant. 

Measurement unit 
 

 

 
, 

G  – rheostat motor (reference signal); 
  – measurement object temperatur; 
U  – device output voltage; 

1MUK  – reference signal gain; 

2MUK  – measured value gain; 

MUT  – device time constant. 
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Velosity sensor 
 

 

( 1) ( ) ( ),VS VST p U t K t     
  – VS shaft rotation frequency, 
U  – VS output voltage, 

VSK  – VS gain, 

VST  – VS time constant. 

Velosity sensor 
 

 

( 1) ( ) ( ),VS VST p U t K t     
  – VS shaft rotation frequency, 
U  – VS output voltage, 

VSK  – VS gain, 

VST  – VS time constant. 

Thyristor transducer (TP) 
 

 
 

2 1( 1) ( ) ( ),TT TTT p U t K U t     

2U  – TT output voltage; 

1U  – TT output voltage; 

TTK  – TT gain; 

TTT  – TT time constant. 
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Demultiplier 
 

 

   2 1 ,PU t K U t  

where ''
PK R R . 

 

Passive correcting RC - circuit 
 

 

     2 11 ,P PT U t T U t    

where T RC . 
 

Active correcting circuit 
 

     2 2 1 11T p U t T U t      

where 1 1 2 2; ;T R C T R C   

Active correcting circuit 

 
 

2 2 1 1 1( 1) ( ) ( ) ( )T p U t T K U t      , 

where 1

2 3

R
K

R R



; 

1 2
1

2 3

;
R R

T C
R R




2 3
2

2 3

.
R R

T C
R R




 

Passive correcting RC-circuit 

 
 

2 2 1 1( 1) ( ) ( )T p U t T p U t    ; 

where 2 3
1

1 2

;
R R

T C
R R




 

1 2
2 3

1 2

;
R R

T R C
R R
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Appendix 2 
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